Skip to main content

Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation

Abstract

Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s−1 or 0.1 s−1; the maximum deformation degree was 50%. By considering the inflection of the ln θε curve and minimum value of the − ∂(ln θ)/∂εε curve, the relationship between the critical strain (εc) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of εc required for DRX decreased with increase in the deformation temperature, and the relationship between εc and the peak strain (εp) was determined as εc = 0.49εp. Discontinuous DRX was clearly favored when the strain was lower than the critical value.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Z.F. Luo, Y.L. Liang, S.L. Long, Y. Jiang, and Z.L. Wu, Mater. Sci. Eng., A 690, 225 (2017).

    Article  Google Scholar 

  2. F.M. Qin, H. Zhu, Z.X. Wang, Z.D. Zhao, W.W. He, and H.Q. Chen, Mater. Sci. Eng., A 684, 634 (2017).

    Article  Google Scholar 

  3. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Mater. Sci. Eng., A 636, 196 (2015).

    Article  Google Scholar 

  4. H. Mirzadeh, Mech. Mater. 85, 66 (2015).

    Article  Google Scholar 

  5. E.I. Poliak and J.J. Joans, Acta Mater. 44, 127 (1996).

    Article  Google Scholar 

  6. Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Mater. Sci. Eng., A 635, 77 (2015).

    Article  Google Scholar 

  7. H.L. Wei, G.Q. Liu, H.T. Zhao, and R.M. Kang, Mater. Des. 50, 484 (2013).

    Article  Google Scholar 

  8. T. Sakai, H. Miura, A. Goloborodko, and O. Sitdikov, Acta Mater. 57, 1532 (2009).

    Article  Google Scholar 

  9. K. Huang and R.E. Logé, Mater. Des. 111, 548 (2016).

    Article  Google Scholar 

  10. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, Acta Metall. 57, 2748 (2009).

    Google Scholar 

  11. E.I. Poliak, ISIJ Int. 43, 692 (2003).

    Article  Google Scholar 

  12. H. Mirzadeh and A. Najafizadeh, Mater. Des. 31, 1174 (2010).

    Article  Google Scholar 

  13. M. Shaban and B. Eghbali, J. Mater. Sci. Technol. 27, 359 (2011).

    Article  Google Scholar 

  14. M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Mater. Des. 45, 384 (2013).

    Article  Google Scholar 

  15. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Int. J. Plast 51, 145 (2013).

    Article  Google Scholar 

  16. F.S. Qu, Z.Y. Reng, R.R. Ma, Z.H. Wang, and D.M. Chen, J. Alloys Compd. 663, 552 (2016).

    Article  Google Scholar 

  17. G.R. Ebrahimi, H. Keshmiri, A.R. Maldar, and A. Momeni, J. Mater. Sci. Technol. 28, 467 (2012).

    Article  Google Scholar 

  18. G.R. Ebrahimi, H. Keshmiri, A. Momeni, and M. Mazinani, Mater. Sci. Eng., A 528, 7488 (2011).

    Article  Google Scholar 

  19. H.L. Wei, G.Q. Liu, H.T. Zhao, and M.H. Zhang, Mater. Sci. Eng., A 596, 112 (2014).

    Article  Google Scholar 

  20. P.Y. Zhao, Y.Z. Wang, and S.R. Niezgoda, Int. J. Plast 100, 52 (2018).

    Article  Google Scholar 

  21. P. Zhang, C. Hu, Q. Zhu, C.G. Ding, and H.Y. Qin, Mater. Des. 65, 1153 (2015).

    Article  Google Scholar 

  22. C. Zhang, L.W. Zhang, and W.F. Shen, Mater. Des. 90, 804 (2016).

    Article  Google Scholar 

  23. N. Haghdadi, D. Martin, and P. Hodgso, Mater. Des. 106, 420 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Postdoctoral Science Foundation (Grant No. 2016M592101), Jiangxi Province Postdoctoral Science Foundation (Grant No. 2016KY39), and Natural Science Foundation of Jiangxi Province (Grant Nos. 20161BBE50065 and GJJ160603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, X., Xie, F. et al. Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation. JOM 70, 2385–2391 (2018). https://doi.org/10.1007/s11837-018-3054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3054-2