Skip to main content
Log in

Upgrading Diasporic Bauxite Ores for Iron and Alumina Enrichment Based on Reductive Roasting

  • Reducing Al Production Impact: GHG Emissions, Energy Reduction & Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A technical route has been proposed to upgrade diasporic bauxite ores for iron and alumina enrichment based on reductive roasting, followed by magnetic separation and alkaline leaching. The thermodynamic analysis revealed that by reductive roasting of the bauxite ore at 980–1100°C, hematite in the ore is transformed to magnetite and kaolinite is converted into γ-Al2O3 and SiO2 (amorphous). Meanwhile, the diaspore changes to α-Al2O3, which favors the recovery of alumina via the Bayer process. The experimental results showed that, after reductive roasting and magnetic separation, iron and alumina in the bauxite ores could be effectively separated into magnetic and non-magnetic fractions, respectively. The iron was enriched in the magnetic fraction as iron concentrate with iron content of 60.15 wt.% and iron recovery of 42.89% after reductive roasting of the bauxite ore at 1000°C for 20 min in 10 vol.% CO/(CO + CO2) atmosphere, followed by magnetic separation at magnetic field intensity of 0.1 T. After desilication of the non-magnetic fraction, which was obtained from the magnetic separation in 160 g/L sodium hydroxide solution with a liquid to solid ratio of 8 mL/g at 125°C for 45 min, alumina was enriched in a bauxite concentrate with Al2O3 content of 53.30 wt.% and the mass ratio of alumina to silica (A/S) of 9.38, meeting the requirement of alumina production by the Bayer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U.S. Geological Survey, Mineral Commodity Summaries, Bauxite and Alumina (2018). https://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2018-bauxi.pdf

  2. C. Liu, A. Feng, and Z. Guo, Physicochem. Probl. Miner. Process. 52, 2 (2016).

    Google Scholar 

  3. X. Li, S. Yu, W. Dong, Y. Chen, Q. Zhou, T. Qi, G. Liu, Z. Peng, and Y. Jiang, Hydrometallurgy 152, 183 (2015).

    Article  Google Scholar 

  4. T. Le, S. Ju, L. Lu, P. Peng, L. Zhou, and S. Wang, Hydrometallurgy 169, 124 (2017).

    Article  Google Scholar 

  5. H. Kahn, M. Tassinari, and G. Ratti, Miner. Eng. 16, 1313 (2003).

    Article  Google Scholar 

  6. G. Li, F. Gu, Z. Peng, J. Luo, B. Deng, and T. Jiang, JOM 69, 1 (2016).

    Google Scholar 

  7. C.A. Pickles, T. Lu, B. Chambers, and J. Forster, Can. Metall. Q. 51, 424 (2013).

    Article  Google Scholar 

  8. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2014).

    Article  Google Scholar 

  9. G. Li, Q. Ye, B. Deng, J. Luo, M. Rao, Z. Peng, and T. Jiang, Hydrometallurgy 176, 62 (2018).

    Article  Google Scholar 

  10. N. Papassiopi, K. Vaxevanidou, and I. Paspaliaris, Miner. Eng. 23, 25 (2010).

    Article  Google Scholar 

  11. B. Gibsona, D.G. Wonyena, and S.C. Chelgani, Miner. Eng. 114, 64 (2017).

    Article  Google Scholar 

  12. J. Liu, X. Wang, C. Lin, and J.D. Miller, Miner. Eng. 78, 58 (2015).

    Article  Google Scholar 

  13. T. Jiang, G. Li, G. Qiu, X. Fan, and Z. Huang, Appl. Clay Sci. 40, 81 (2008).

    Article  Google Scholar 

  14. G. Li, F. Gu, Z. Peng, J. Luo, B. Deng, and T. Jiang, in Light Metals 2017, The Minerals, Metals and Materials Series, ed. by A.P. Ratvik (Springer, New York, 2017), p. 75.

  15. G. Li, J. Zeng, J. Luo, M. Liu, T. Jiang, and G. Qiu, Appl. Clay Sci. 99, 282 (2014).

    Article  Google Scholar 

  16. G. Qiu, T. Jiang, G. Li, X. Fan, and Z. Huang, Scand. J. Metall. 33, 121 (2004).

    Article  Google Scholar 

  17. V.I. Groudeva and S.N. Groudev, Travaux Icsoba, 13, 257 (1983).

    Google Scholar 

  18. G. Li, T. Jiang, G. Qiu, X. Fan, and H. Jiang, Trans. Nonferrous Metals Soc. 12, 132 (2002).

    Google Scholar 

  19. G. Li, J. Luo, T. Jiang, Z. Li, Z. Peng, and Y. Zhang, Metals 6, 294 (2016).

    Article  Google Scholar 

  20. J. Luo, G. Li, M. Rao, J. Zhang, Y. Guo, and T. Jiang, J. Nonferr. Metal. 23, 3470 (2013).

    Article  Google Scholar 

  21. S. Bi and H. Yu, The Production Process of Alumina (Beijing: Chemical Industry Press, 2006), pp. 65–70. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant 51234008, the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources under Grant 2014-405, and the Fundamental Research Funds for the Central Universities of Central South University under Grants 502221803 and 502211823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Li, G., Peng, Z. et al. Upgrading Diasporic Bauxite Ores for Iron and Alumina Enrichment Based on Reductive Roasting. JOM 70, 1893–1901 (2018). https://doi.org/10.1007/s11837-018-3000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3000-3

Navigation