Skip to main content

Advertisement

Log in

Managing the Electrolysis Process by Integrating In Situ Measurements of the Bath’s Properties

  • Reducing Al Production Impact: GHG Emissions, Energy Reduction & Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Control of the bath’s composition and temperature is crucial to the stability, energy consumption and material efficiency of the aluminium electrolysis process. The traditional approach involves periodic measurement of the bath’s composition with x-ray diffraction, as well as the bath’s temperature. The sampling and corrective measures applied to the cell can take 8–12 h. Since the relationship between the excess AlF3 in the bath and the temperature is difficult to manage, the electrolysis process involves a time lapse. With the integration of in situ measurements of the bath’s properties in the electrolysis cell, optimization of the primary aluminium reduction process was achieved. Increased measurement frequencies and the integration of in situ measurements into the electrolysis process reduced the instability of the process, resulting in energy savings and increased current efficiency of 96.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Verdenik, Sinteza vodenja procesa elektrolize primarnega aluminija (Maribor: A. Verdenik, 2004), p. 57.

    Google Scholar 

  2. G.P. Bearne, JOM 51, 16 (1999). https://doi.org/10.1007/s11837-999-0035-5.

    Article  Google Scholar 

  3. S. Kolås and T. Støre, Control Eng. Pract. 17, 1035 (2009).

    Article  Google Scholar 

  4. S. Zeng, W. Sasha, and Y. Qu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/181905.

    Google Scholar 

  5. D. Tormod, K. Stainar, and S. Trond, MIC (2003). https://doi.org/10.4173/mic.2003.4.2.

    Google Scholar 

  6. E.W. Dewing, Metall. Mater. Trans. B (1991). https://doi.org/10.1007/BF02652482.

    Google Scholar 

  7. A. Agnihotri, S.U. Pathak, and J. Mukhopadyay, IIM (2014). https://doi.org/10.1007/s12666-013-0348-5.

    Google Scholar 

  8. A. Agnihotri, S.U. Pathak, and J. Mukhopadyay, IIM (2014). https://doi.org/10.1007/s12666-013-0349-4.

    Google Scholar 

  9. X. Wang, B. Hosler, and G. Tarcy, Light Met. (2011). https://doi.org/10.1002/9781118061992.ch86.

    Google Scholar 

  10. X. Wang, G. Tarcy, and E. Batista, Light Met. (2011). https://doi.org/10.1002/9781118061992.ch87.

    Google Scholar 

  11. M. Dupuis, Light Met. Age 2, 20 (2013).

    Google Scholar 

  12. M.P. Taylor, Challenges in optimising and controlling the electrolyte in aluminium smelters, Paper presented at the Molten Slags, Fluxes and Salts 1997 Conference, pp. 659–673.

  13. J. Thonstad, P. Fellner, G.M. Haarberg, J. Híveš, H. Kvande, and Å. Sterten, Aluminium Electrolysis—Fundamentals of the Hall—Héroult Process, 3rd ed. (Düsseldorf, DE: Aluminium-Verlag Marketing & Kommunikation GmbH, 2001), pp. 254–255.

    Google Scholar 

  14. P. Lavoie, M.P. Taylor, and J.B. Metson, Metall. Mater. Trans. B (2016). https://doi.org/10.1007/s11663-016-0680-3.

    Google Scholar 

  15. A.M. Stam, M.P. Taylor, J.J.J. Chen, A. Mulder, and R. Rodrigo, TMS Light Met. 2, 309 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haris Salihagić Hrenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salihagić Hrenko, H., Medved, J. Managing the Electrolysis Process by Integrating In Situ Measurements of the Bath’s Properties. JOM 70, 1883–1886 (2018). https://doi.org/10.1007/s11837-018-2999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2999-5

Navigation