, Volume 70, Issue 10, pp 2315–2320 | Cite as

Understanding the Strengthening Effect of β1 Precipitates in Mg-Nd Using In Situ Synchrotron X-ray Diffraction

  • Bijin Zhou
  • Leyun Wang
  • Gaoming Zhu
  • Jie Wang
  • Wen Wen
  • Xiaoqin Zeng
Integrated Computational Materials Engineering of Magnesium


In situ synchrotron x-ray diffraction was carried out at beamline BL14B1 of Shanghai Synchrotron Radiation Facility (SSRF) to study the tensile deformation of an extruded Mg-2.2 wt.%Nd alloy before and after aging. The aged specimen that contained β1 (Mg3Nd) precipitates showed higher strength than the nonaged specimen, while the strain to failure of the two specimens was almost equal. Analysis of the lattice strain evolution in the aged specimen revealed a modest load-transfer effect from Mg to β1 after 2% strain. Peak width analysis indicated that a high level of microstrain developed in β1 immediately after material yielding. Ex situ transmission electron microscopy (TEM) showed strong interaction between basal dislocations and β1 precipitates. Based on these results, it is proposed that the extra strength in the aged specimen is caused by β1 impeding dislocation movement and eventually being sheared by dislocations.



This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0701203) and the National Natural Science Foundation of China (Nos. 51631006 and 51671127). L.W. is also sponsored by Shanghai Pujiang Program (No. 16PJ1404600). The authors thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during experiments.


  1. 1.
    A.A. Luo, JOM 54, 42 (2002).CrossRefGoogle Scholar
  2. 2.
    A.A. Luo, J. Magnes. Alloys 1, 2 (2013).CrossRefGoogle Scholar
  3. 3.
    B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Scr. Mater. 30, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Homma, N. Kunito, and S. Kamado, Scr. Mater. 61, 644 (2009).CrossRefGoogle Scholar
  5. 5.
    K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi, Scr. Mater. 63, 710 (2010).CrossRefGoogle Scholar
  6. 6.
    Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort, and J. Meng, Mater. Sci. Eng. A 622, 121 (2015).CrossRefGoogle Scholar
  7. 7.
    X.Y. Xia, W.H. Sun, A.A. Luo, and D.S. Stone, Acta Mater. 111, 335 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Sanaty-Zadeh, A.A. Luo, and D.S. Stone, Acta Mater. 94, 294 (2015).CrossRefGoogle Scholar
  9. 9.
    Y.Z. Ji, A. Issa, T.W. Heo, J.E. Saal, C. Wolverton, and L.Q. Chen, Acta Mater. 76, 259 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Issa, J.E. Saal, and C. Wolverton, Acta Mater. 65, 240 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Saito and K. Hiraga, Mater. Trans. 52, 1860 (2011).CrossRefGoogle Scholar
  12. 12.
    J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).CrossRefGoogle Scholar
  13. 13.
    E.L.S. Solomon, V. Araullo-Peters, J.E. Allison, and E.A. Marquis, Scr. Mater. 128, 14 (2017).CrossRefGoogle Scholar
  14. 14.
    S. DeWitt, E.L.S. Solomon, A.R. Natarajan, V. Araullo-Peters, S. Rudraraju, L.K. Aagesen, B. Puchala, E.A. Marquis, A. Van Der Ven, K. Thornton, and J.E. Allison, Acta Mater. 136, 378 (2017).CrossRefGoogle Scholar
  15. 15.
    B. Zhou, L. Wang, B. Chen, Y. Jia, W. Wen, D. Li, D. Shua, P. Jin, X. Zeng, and W. Ding, Mater. Sci. Eng. A 708, 319 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Choudhuri, R. Banerjee, and S.G. Srinivasan, Sci. Rep. 7, 40540 (2017).CrossRefGoogle Scholar
  17. 17.
    M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand, Acta Mater. 55, 1999 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Garcés, E. Oñorbe, P. Pérez, M. Klaus, C. Genzel, and P. Adeva, Mater. Sci. Eng. A 533, 119 (2012).CrossRefGoogle Scholar
  19. 19.
    L.Y. Wang, M.M. Li, and J. Almer, Acta Mater. 62, 239 (2014).CrossRefGoogle Scholar
  20. 20.
    S.R. Kada, P.A. Lynch, J.A. Kimpton, and M.R. Barnett, Acta Mater. 119, 145 (2016).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, M.M. Li, J.S. Park, P. Kenesei, J. Almer, C. Xu, and J.F. Stubbins, Acta Mater. 126, 67 (2017).CrossRefGoogle Scholar
  22. 22.
    G. Garcés, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shelld, and P. Adeva, Acta Mater. 94, 78 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Lentz, M. Klaus, M. Wagner, C. Fahrenson, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic, Mater. Sci. Eng. A 628, 396 (2015).CrossRefGoogle Scholar
  24. 24.
    T.Y. Yang, W. Wen, G.Z. Yin, X.L. Li, M. Gao, Y.L. Gu, and L. Li, Nucl. Sci. Technol. 26, 1 (2015).Google Scholar
  25. 25.
    T. Honma, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 55, 4137 (2007).CrossRefGoogle Scholar
  26. 26.
    K.Y. Zheng, J. Dong, X.Q. Zeng, and W.J. Ding, Mater. Sci. Eng. A 489, 44 (2008).CrossRefGoogle Scholar
  27. 27.
  28. 28.
    J.J. Bhattacharyya, F. Wang, N. Stanford, and S.R. Agnew, Acta Mater. 146, 55 (2018).CrossRefGoogle Scholar
  29. 29.
    E.L.S. Solomon and E.A. Marquis, Mater. Lett. 216, 67 (2018).CrossRefGoogle Scholar
  30. 30.
    M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root, Philos. Mag. A 79, 1671 (1999).CrossRefGoogle Scholar
  31. 31.
    S.R. Agnew, R.P. Mulay, F.J. Polesak III, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen, Acta Mater. 61, 3769 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.National Engineering Research Center of Light Alloy Net FormingShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations