, Volume 70, Issue 9, pp 1652–1658 | Cite as

Evolution of a Materials Data Infrastructure

  • James A. Warren
  • Charles H. Ward
ICME - 10 Years Later: Success and Challenges


The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.


  1. 1.
    J.H. Westbrook and J.R. Rumble Jr, Computerized Materials Data Systems (Fairfield Glades: National Bureau of Standards, 1983).Google Scholar
  2. 2.
    J.S. Glassman and J.R. Rumble, eds., Computerization and Networking of Materials Data Bases, ASTM STP 1017 (Philadelphia: American Society for Testing and Materials, 1989).Google Scholar
  3. 3.
    National Research Council, Materials Research to Meet 21st-Century Defense Needs (Washington: The National Academies Press, 2003). Scholar
  4. 4.
    National Research Council, Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems (Washington: The National Academies Press, 2003). Scholar
  5. 5.
    International Assessment of Research and Development in Simulation-Based Engineering and Science (Baltimore, MD: World Technology Evaluation Center, Inc., 2009.
  6. 6.
    National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Academies Press, 2008). Scholar
  7. 7.
    Materials Genome Initiative Strategic Plan, The White House, Washington, DC (2014)
  8. 8.
    S.R. Kalidindi, Int. Mater. Rev. 60, 150 (2015). Scholar
  9. 9.
    S.R. Kalidindi and M. de Graef, Annu. Rev. Mater. Res. 45, 171 (2015). Scholar
  10. 10.
    J. Hill, A. Mannodi-Kanakkithodi, R. Ramprasad, B. Meredig, Computational Materials System Design, eds. D. Shin, J. Saal (New York, NY: Springer, 2018).
  11. 11.
    C.H. Ward, J.A. Warren, and R.A. Hanisch, Integr. Mater. Manuf. Innov. 3, 22 (2014). Scholar
  12. 12.
    J.P. Holdren, Increasing Access to the Results of Federally Funded Scientific Research (Washington, DC: The White House, 2013).
  13. 13.
    Open Science Collaboration, Science 349, 6251 (2015). Scholar
  14. 14.
    C.G. Begley and L.M. Ellis, Nature 483, 531 (2012). Scholar
  15. 15.
    M. Baker, Nature 533, 452 (2016). Scholar
  16. 16.
    M.D. Wilkinson, et al., Sci. Data 3, 160018 (2016). Scholar
  17. 17.
    Building a Materials Data Infrastructure (Pittsburgh, PA: The Minerals, Metals & Materials Society, 2017).
  18. 18.
    R.T. Fielding (Ph.D. dissertation, University of California, Irvine, 2000).Google Scholar
  19. 19.
    A. Dima, S. Bhaskarla, and C. Becker, et al., JOM 68, 2053 (2016). Scholar
  20. 20.
    B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and I. Foster, JOM 68, 2045 (2016). Scholar
  21. 21.
    B. Puchala, G. Tarcea, E.A. Marquis, M. Hedstrom, H.V. Jagadish, and J.E. Allison, JOM 68, 2035 (2016). Scholar
  22. 22.
    J. O’Mara, B. Meredig, and K. Michel, JOM 68, 2031 (2016). Scholar
  23. 23.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013). Scholar
  24. 24.
    S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012). Scholar
  25. 25.
    S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H.T. Stokes, D.O. Demchenko, and D. Morgan, Comput. Mater. Sci. 58, 218 (2012). Scholar
  26. 26.
    J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013). Scholar
  27. 27.
    The NIST Materials Resource Registry.
  28. 28.
    S.R. Hall, F.H. Allen, and I.D. Brown, Acta Cryst. A47, 655 (1991).CrossRefGoogle Scholar
  29. 29.
    K.J. Michel and B. Meredig, MRS Bull. 41, 617 (2016). Scholar
  30. 30.
    The Materials Data Curation System.
  31. 31.
    J. Rumble, E-Materials Data. ASTM International. Standardization News (2014).
  32. 32.
    T. Austin, C. Bullough, D. Gagliardi, D. Leal, and M. Loveday, Int. J. Digit Curation 8, 5 (2013). Scholar
  33. 33.
    M.D. Jacobsen, J.R. Fourman, K.M. Porter, E.A. Wirrig, M.D. Benedict, B.J. Foster, and C.H. Ward, Integr. Mater Manuf. Innov. 5, 12 (2016). Scholar
  34. 34.
    N.S. Carey, T. Budavri, N. Daphalapurkar, and K.T. Ramesh, Integr. Mater. Manuf. Innov. 5, 7 (2016). Scholar
  35. 35.
    M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, and D.R. Clarke, Chem. Mater. 25, 2911 (2013). Scholar
  36. 36.
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017). Scholar
  37. 37.
    E. Popova, T.M. Rodgers, and X. Gong, et al., Integr. Mater. Manuf. Innov. 6, 54 (2017). Scholar
  38. 38.
    P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, B. Maruyama, and N.P.J. Comput, Mater. 2, 16031 (2016). Scholar
  39. 39.
    D.U. Furrer, D.M. Dimiduk, J.D. Cotton, and C.H. Ward, Integr. Mater. Manuf. Innov. 6, 249 (2017). Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Materials and Manufacturing DirectorateAir Force Research LaboratoryWright-Patterson AFBUSA

Personalised recommendations