Advertisement

JOM

, Volume 70, Issue 9, pp 1744–1751 | Cite as

Nanoscale Analysis of Corrosion Products: A Review of the Application of Atom Probe and Complementary Microscopy Techniques

  • Katja Eder
  • Ingrid McCarroll
  • Alexandre La Fontaine
  • Julie M. Cairney
3D Nanoscale Characterization of Metals, Minerals, and Materials
  • 146 Downloads

Abstract

Atom probe tomography has developed into a technique that can provide atomic-scale three-dimensional information pertaining to corrosion products, with excellent chemical resolution. Like for most characterization techniques, use of atom probe tomography for analysis of corrosion products is not without its challenges. In the short time that this technique has been utilized for corrosion studies, complementary microscopy techniques have been extremely useful for production and analysis of oxide-containing atom probe samples. We review herein how correlative microscopy techniques such as electron microscopy, microanalysis techniques, and transmission Kikuchi diffraction have been utilized to overcome challenges associated with atom probe microscopy, including how information from correlative microscopy can be applied to inform three-dimensional reconstruction of atom probe data.

Notes

Acknowledgements

The authors would like to thank Chun Yu, Jianqiang Zhang, and David Young for provision of the CrO-containing stainless steel used in Fig. 1b and Limei Yang for the lift-out of this specimen. The authors further acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy and Microanalysis at the University of Sydney.

References

  1. 1.
    T.F. Kelly, D.J. Larson, K. Thompson, R.L. Alvis, J.H. Bunton, J.D. Olson, and B.P. Gorman, Annu. Rev. Mater. Res. 37, 681 (2007).CrossRefGoogle Scholar
  2. 2.
    K. Stiller, M. Thuvander, I. Povstugar, P.P. Choi, and H.-O. Andrén, MRS Bull. 41, 35 (2016).CrossRefGoogle Scholar
  3. 3.
    D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, and J.M. Cairney, Scr. Mater. 77, 29 (2014).CrossRefGoogle Scholar
  4. 4.
    N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R. Cottis, M. Preuss, and C.R.M. Grovenor, Acta Mater. 60, 7132 (2012).CrossRefGoogle Scholar
  5. 5.
    K. Kruska, S. Lozano-Perez, D.W. Saxey, T. Terachi, T. Yamada, and G.D.W. Smith, Corros. Sci. 63, 225 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Viskari, M. Hörnqvist, K.L. Moore, Y. Cao, and K. Stiller, Acta Mater. 61, 3630 (2013).CrossRefGoogle Scholar
  7. 7.
    T.F. Kelly and D.J. Larson, Annu. Rev. Mater. Res. 42, 1 (2012).CrossRefGoogle Scholar
  8. 8.
    B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, and B. Deconihout, Rev. Sci. Instrum. 77, 043705 (2006).CrossRefGoogle Scholar
  9. 9.
    A. Vella, B. Mazumder, G. Da Costa, and B. Deconihout, J. Appl. Phys. 110, 044321 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Pérez-Huerta, F. Laiginhas, D.A. Reinhard, T.J. Prosa, and R.L. Martens, Micron 80, 83 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Piazolo, A. La Fontaine, P. Trimby, S. Harley, L. Yang, R. Armstrong, and J.M. Cairney, Nat. Commun. 7, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Mazumder, X. Liu, R. Yeluri, F. Wu, U.K. Mishra, and J.S. Speck, J. Appl. Phys. 116, 134101 (2014).CrossRefGoogle Scholar
  13. 13.
    G. Sundell, M. Thuvander, A.K. Yatim, H. Nordin, and H.O. Andrén, Corros. Sci. 90, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    A. La Fontaine, H.-W. Yen, P.J. Felfer, S.P. Ringer, and J.M. Cairney, Scr. Mater. 99, 1 (2015).CrossRefGoogle Scholar
  15. 15.
    B. Gault, D.W. Saxey, M.W. Ashton, S.B. Sinnott, A.N. Chiaramonti, M.P. Moody, and D.K. Schreiber, New J. Phys. 18, 033031 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Koelling, N. Innocenti, A. Schulze, M. Gilbert, A.K. Kambham, and W. Vandervorst, J. Appl. Phys. 109, 104909 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Meisnar, M. Moody, and S. Lozano-Perez, Corros. Sci. 98, 661 (2015).CrossRefGoogle Scholar
  18. 18.
    E.A. Marquis, B.P. Geiser, T.J. Prosa, and D.J. Larson, J. Microsc. 241, 225 (2011).CrossRefGoogle Scholar
  19. 19.
    B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Atom Probe Microscopy (New York: Springer, 2012), pp. 74–81.CrossRefGoogle Scholar
  20. 20.
    M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, D.J. Larson, R. Anderson, S.J. Klepeis, J.M. Cairney, D.W. Saxey, and D. Mcgrouther, Microsc. Microanal. 13, 428 (2007).CrossRefGoogle Scholar
  21. 21.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  22. 22.
    P.J. Felfer, T. Alam, S.P. Ringer, and J.M. Cairney, Microsc. Res. Tech. 75, 484 (2012).CrossRefGoogle Scholar
  23. 23.
    L. Viskari, S. Johansson, and K. Stiller, Mater. High Temp. 28, 336 (2011).CrossRefGoogle Scholar
  24. 24.
    R.R. Keller and R.H. Geiss, J. Microsc. 245, 245 (2012).CrossRefGoogle Scholar
  25. 25.
    P.W. Trimby, Ultramicroscopy 120, 16 (2012).CrossRefGoogle Scholar
  26. 26.
    G.C. Sneddon, P.W. Trimby, and J.M. Cairney, Mater. Sci. Eng. R Rep. 110, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    K. Babinsky, R. De Kloe, H. Clemens, and S. Primig, Ultramicroscopy 144, 9 (2014).CrossRefGoogle Scholar
  28. 28.
    Y. Chen, K.P. Rice, T.J. Prosa, E.A. Marquis, and R.C. Reed, Microsc. Microanal. 21, 687 (2015).CrossRefGoogle Scholar
  29. 29.
    A.J. Breen, K. Babinsky, A.C. Day, K. Eder, C.J. Oakman, P.W. Trimby, S. Primig, J.M. Cairney, and S.P. Ringer, Microsc. Microanal. 23, 279 (2017).CrossRefGoogle Scholar
  30. 30.
    N. Mortazavi, M. Esmaily, and M. Halvarsson, Mater. Lett. 147, 42 (2015).CrossRefGoogle Scholar
  31. 31.
    M. Meisnar, A. Vilalta-Clemente, A. Gholinia, M. Moody, A.J. Wilkinson, N. Huin, and S. Lozano-Perez, Micron 75, 1 (2015).CrossRefGoogle Scholar
  32. 32.
    A. Vilalta-Clemente, M. Meisnar, S. Lozano-Perez, and A.J. Wilkinson, Microsc. Microanal. 21, 605 (2015).CrossRefGoogle Scholar
  33. 33.
    C.L. Verona and R.L. Higginson, Mater. High Temp. 26, 79 (2009).CrossRefGoogle Scholar
  34. 34.
    A. La Fontaine, H.-W. Yen, P. Trimby, S. Moody, S. Miller, M. Chensee, S. Ringer, and J. Cairney, Corros. Sci. 85, 1 (2014).CrossRefGoogle Scholar
  35. 35.
    D.W. Saxey, J.M. Cairney, D. McGrouther, T. Honma, and S.P. Ringer, Ultramicroscopy 107, 756 (2007).CrossRefGoogle Scholar
  36. 36.
    H.O. Colijn, T.F. Kelly, R.M. Ulfig, and R.G. Buchheit, Microsc. Microanal. 10, 1150 (2004).CrossRefGoogle Scholar
  37. 37.
    P. Felfer, I. McCarroll, C. Macauley, and J.M. Cairney, Ultramicroscopy 160, 163 (2016).CrossRefGoogle Scholar
  38. 38.
    D.J. Larson, R.M. Ulfig, T.J. Prosa, B.P. Geiser, and T.F. Kelly, (Springer, New York, 2013), pp. 25–53.Google Scholar
  39. 39.
    R.P. Babu, S. Irukuvarghula, A. Harte, and M. Preuss, Acta Mater. 120, 391 (2016).CrossRefGoogle Scholar
  40. 40.
    K. Thompson, B. Gorman, D. Larson, B.V. Leer, and L. Hong, Microsc. Microanal. 12, 1736 (2006).CrossRefGoogle Scholar
  41. 41.
    S. Lozano-Perez, D.W. Saxey, T. Yamada, and T. Terachi, Scr. Mater. 62, 855 (2010).CrossRefGoogle Scholar
  42. 42.
    M.J. Olszta, D.K. Schreiber, L.E. Thomas, and S.M. Bruemmer, in Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power SystemsWater Reactors (Springer, Cham, 2016), pp. 331–342.Google Scholar
  43. 43.
    B. de Gabory, Y. Dong, A.T. Motta, and E.A. Marquis, J. Nucl. Mater. 462, 304 (2015).CrossRefGoogle Scholar
  44. 44.
    D.K. Schreiber, M.J. Olszta, and S.M. Bruemmer, Scr. Mater. 69, 509 (2013).CrossRefGoogle Scholar
  45. 45.
    A.J. London, S. Lozano-Perez, S. Santra, S. Amirthapandian, B.K. Panigrahi, C.S. Sundar, and C.R.M. Grovenor, J. Phys: Conf. Ser. 522, 012028 (2014).Google Scholar
  46. 46.
    C.A. Williams, G.D.W. Smith, and E.A. Marquis, Scr. Mater. 67, 108 (2012).CrossRefGoogle Scholar
  47. 47.
    S.-I. Baik, M.J. Olszta, S.M. Bruemmer, and D.N. Seidman, Scr. Mater. 66, 809 (2012).CrossRefGoogle Scholar
  48. 48.
    S. Lozano-Perez, M. Schröder, T. Yamada, T. Terachi, C.A. English, and C.R.M. Grovenor, Appl. Surf. Sci. 255, 1541 (2008).CrossRefGoogle Scholar
  49. 49.
    D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S. Lozano-Perez, and S.M. Bruemmer, Microsc. Microanal. 19, 676 (2013).CrossRefGoogle Scholar
  50. 50.
    N. Dawahre, G. Shen, S. Balci, W. Baughman, D.S. Wilbert, N. Harris, L. Butler, R. Martens, S.M. Kim, and P. Kung, J. Electron. Mater. 41, 801 (2012).CrossRefGoogle Scholar
  51. 51.
    M. Lee, (Apple Academic Press, Oakville, 2016), pp. 181–223.Google Scholar
  52. 52.
    P. Van der Heide, (Wiley, Hoboken, 2014), pp. 1–19.Google Scholar
  53. 53.
    T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney, Metall. Mater. Trans. A 43, 2183 (2012).CrossRefGoogle Scholar
  54. 54.
    F. Vurpillot, G. Da Costa, A. Menand, and D. Blavette, J. Microsc. 203, 295 (2001).MathSciNetCrossRefGoogle Scholar
  55. 55.
    B. Gault, F. de Geuser, L.T. Stephenson, M.P. Moody, B.C. Muddle, and S.P. Ringer, Microsc. Microanal. 14, 296 (2008).CrossRefGoogle Scholar
  56. 56.
    B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Atom Probe Microscopy (New York: Springer, 2012).CrossRefGoogle Scholar
  57. 57.
    B. Gault, M.P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley, and S.P. Ringer, J. Appl. Phys. 105, 034913 (2009).CrossRefGoogle Scholar
  58. 58.
    B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Mater. Today 15, 378 (2012).CrossRefGoogle Scholar
  59. 59.
    T.T. Tsong, Surf. Sci. 81, 28 (1979).CrossRefGoogle Scholar
  60. 60.
    G.L. Kellogg and T.T. Tsong, J. Appl. Phys. 51, 1184 (1980).CrossRefGoogle Scholar
  61. 61.
    Y. Tu, H. Takamizawa, B. Han, Y. Shimizu, K. Inoue, T. Toyama, F. Yano, A. Nishida, and Y. Nagai, Ultramicroscopy 173, 58 (2017).CrossRefGoogle Scholar
  62. 62.
    B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, and H. Leitner, Ultramicroscopy 113, 182 (2012).CrossRefGoogle Scholar
  63. 63.
    A. Grenier, S. Duguay, J.P. Barnes, R. Serra, N. Rolland, G. Audoit, P. Morin, P. Gouraud, D. Cooper, D. Blavette, and F. Vurpillot, Appl. Phys. Lett. 106, 213102 (2015).CrossRefGoogle Scholar
  64. 64.
    S.J. Chen, X. Yao, C. Zheng, and W.H. Duan, Ultramicroscopy 182, 28 (2017).CrossRefGoogle Scholar
  65. 65.
    B.P. Gorman, D.R. Diercks, and D. Jaeger, Microsc. Microanal. 14, 1042 (2008).CrossRefGoogle Scholar
  66. 66.
    F. Vurpillot, N. Rolland, R. Estivill, S. Duguay, and D. Blavette, Semicond. Sci. Technol. 31, 074002 (2016).CrossRefGoogle Scholar
  67. 67.
    F. Vurpillot, Atom Probe Tomography: Put Theory into Practice (Cambridge: Academic Press, 2016), pp. 183–249.CrossRefGoogle Scholar
  68. 68.
    D. Melkonyan, C. Fleischmann, A. Veloso, A. Franquet, J. Bogdanowicz, R.J.H. Morris, and W. Vandervorst, Ultramicroscopy 186, 1 (2018).CrossRefGoogle Scholar
  69. 69.
    C. Oberdorfer and G. Schmitz, Microsc. Microanal. 17, 15 (2011).CrossRefGoogle Scholar
  70. 70.
    B. Mazumder, V. Purohit, M. Gruber, A. Vella, F. Vurpillot, and B. Deconihout, Thin Solid Films 589, 38 (2015).CrossRefGoogle Scholar
  71. 71.
    T.F. Kelly, Microsc. Microanal. 23, 34 (2017).CrossRefGoogle Scholar
  72. 72.
    F. Vurpillot and C. Oberdorfer, Ultramicroscopy 159, 202 (2015).CrossRefGoogle Scholar
  73. 73.
    N. Madaan, J. Bao, M. Nandasiri, Z. Xu, S. Thevuthasan, and A. Devaraj, Appl. Phys. Lett. 107, 091601 (2015).CrossRefGoogle Scholar
  74. 74.
    G. Sha, A. Cerezo, and G.D.W. Smith, Appl. Phys. Lett. 92, 043503 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Australian Centre for Microscopy and MicroanalysisThe University of SydneySydneyAustralia

Personalised recommendations