, Volume 70, Issue 8, pp 1471–1477 | Cite as

Transmission Electron Microscopy (TEM) Study of the Oxide Layers Formed on Fe-12Cr-4Al Ferritic Alloy in an Oxygenated Pb-Bi Environment at 800°C

  • M. P. Popovic
  • Y. Yang
  • A. M. Bolind
  • V. B. Ozdol
  • D. L. Olmsted
  • M. Asta
  • P. Hosemann
Nuclear Materials, Oxidation, Supercritical CO2, and Corrosion Behavior


Liquid lead–bismuth eutectic (LBE) can serve as a heat transfer fluid for advanced nuclear applications as well as concentrated solar power but poses corrosion challenges for the structural materials at elevated temperatures. Oxide passivation of the surfaces of these materials during exposure to liquid LBE can inhibit such material degradation. In this study, transmission electron microscopy of oxides formed on Fe-Cr-Al alloy during exposure to low-oxygenated LBE at 800°C has been performed. A complex structure of the oxide film has been revealed, consisting of a homogeneous inner layer of mostly Al2O3 and a heterogeneous outer layer.



Funding for this research was provided by the US Department of Energy (DOE) SunShot program (Award No. DE-EE0005941). The authors thank the California Institute for Quantitative Biosciences (QB3) and Biomolecular Nanotechnology Center (BNC) at UC Berkeley for making the Quanta 3D FEG DualBeam SEM available. Work at NCEM as a part of Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    F. Barbier and A. Rusanov, J. Nucl. Mater. 296, 231 (2001).CrossRefGoogle Scholar
  2. 2.
    G. Müller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmermann, V. Engelko, A. Rusanov, and V. Markov, J. Nucl. Mater. 301, 40 (2002).CrossRefGoogle Scholar
  3. 3.
    D. Frazer, E. Stergar, C. Cionea, and P. Hosemann, Energy Procedia (Conf. Ser.) 49, 627 (2014).CrossRefGoogle Scholar
  4. 4.
    P. Hosemann, D. Frazer, E. Stergar, and K. Lambrinou, Scr. Mater. 118, 37 (2016).CrossRefGoogle Scholar
  5. 5.
    K.L. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Khericha and E. Loewen, Nucl. Eng. Des. 241, 3008 (2011).CrossRefGoogle Scholar
  7. 7.
    J. Van den Bosch, P. Hosemann, A. Almazouzi, and S.A. Maloy, J. Nucl. Mater. 398, 116 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Jianu, G. Müller, A. Weisenburger, A. Heinzel, C. Fazio, V.G. Markov, and A.D. Kashtanov, J. Nucl. Mater. 394, 102 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Weisenburger, A. Jianu, W. An, R. Fetzer, M. Del Giacco, A. Heinzel, G. Müller, V.G. Markov, and A.D. Kasthanov, J. Nucl. Mater. 431, 77 (2012).CrossRefGoogle Scholar
  10. 10.
    A.L. Johnson, D. Parsons, J. Manzerova, D.L. Perry, D. Koury, B. Hosterman, and J.W. Farley, J. Nucl. Mater. 328, 88 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, and G. Santarini, Corros. Sci. 50, 2537 (2008).CrossRefGoogle Scholar
  12. 12.
    N. Li, J. Nucl. Mater. 300, 73 (2002).CrossRefGoogle Scholar
  13. 13.
    A. Weisenburger, C. Schroer, A. Jianu, A. Heinzel, J. Konys, H. Steiner, G. Müller, C. Fazio, A. Gessi, S. Babayan, A. Kobzova, L. Martinelli, K. Ginestar, F. Balbaud-Célerier, F.J. Martín-Muñoz, and L. Soler, Crespo. J. Nucl. Mater. 415, 260 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Heinzel, A. Weisenburger, and G. Müller, J. Nucl. Mater. 448, 163 (2014).CrossRefGoogle Scholar
  15. 15.
    B.X. He, N. Li, and M. Mineev, J. Nucl. Mater. 297, 214 (2001).CrossRefGoogle Scholar
  16. 16.
    J. Zhang, P. Hosemann, and S. Maloy, J. Nucl. Mater. 404, 82 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Zhang, Oxid. Met. 81, 597 (2014).CrossRefGoogle Scholar
  18. 18.
    C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, and J. Konys, J. Nucl. Mater. 418, 8 (2011).CrossRefGoogle Scholar
  19. 19.
    A.L. Johnson, D. Koury, J. Welch, T. Ho, S. Sidle, C. Harland, B. Hosterman, U. Younas, L. Ma, and J.W. Farley, J. Nucl. Mater. 376, 265 (2008).CrossRefGoogle Scholar
  20. 20.
    P. Hosemann, H.T. Thau, A.L. Johnson, S.A. Maloy, and N. Li, J. Nucl. Mater. 373, 246 (2008).CrossRefGoogle Scholar
  21. 21.
    X. Chen, J.F. Stubbins, P. Hosemann, and A. Bolind, J. Nucl. Mater. 398, 172 (2010).CrossRefGoogle Scholar
  22. 22.
    P. Hosemann, M. Hawley, D. Koury, J.G. Swadener, J. Welch, A.L. Johnson, G. Mori, and N. Li, J. Nucl. Mater. 375, 323 (2008).CrossRefGoogle Scholar
  23. 23.
    P. Hosemann, M. Hawley, G. Mori, N. Li, and S. Maloy, J. Nucl. Mater. 376, 289 (2008).CrossRefGoogle Scholar
  24. 24.
    M.D. Abad, S. Parker, D. Frazer, M. Rebello de Figueiredo, A. Lupinacci, K. Kikuchi, and P. Hosemann, Oxid. Met. 84, 211 (2015).CrossRefGoogle Scholar
  25. 25.
    C. Cionea, M.D. Abad, Y. Aussat, D. Frazer, A.J. Gubser, and P. Hosemann, Sol. En. Mater. Sol. Cell. 144, 235 (2016).CrossRefGoogle Scholar
  26. 26.
    V. Gorynin, G.P. Karzov, V.G. Markov, and V.A. Yakovlev, Met. Sci. Heat Treat. 41, 384 (1999).CrossRefGoogle Scholar
  27. 27.
    M. Kondo and M. Takahashi, J. Nucl. Mater. 356, 203 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Weisenburger, A. Jianu, S. Doyle, M. Bruns, R. Fetzer, A. Heinzel, M. Del Giacco, W. An, and G. Müller, J. Nucl. Mater. 437, 282 (2013).CrossRefGoogle Scholar
  29. 29.
    D. Naumenko, W.J. Quadakkers, A. Galerie, Y. Wouters, and S. Jourdain, High Temp. 20, 287 (2003).CrossRefGoogle Scholar
  30. 30.
    A. Weisenburger, A. Heinzel, G. Muller, H. Muscher, and A. Rousanov, J. Nucl. Mat. 376, 274 (2008).CrossRefGoogle Scholar
  31. 31.
    P. Tomaszewicz and G.R. Wallwork, Oxid. Met. 20, 75 (1983).CrossRefGoogle Scholar
  32. 32.
    P. Hosemann, P. Dickerson, R. Dickerson, N. Li, and S.A. Maloy, Corros. Sci. 66, 196 (2013).CrossRefGoogle Scholar
  33. 33.
    D. Koury, A.L. Johnson, J. Welch, and J.W. Farley, J. Nucl. Mater. 429, 210 (2012).CrossRefGoogle Scholar
  34. 34.
    J.F. Shackelford and R.H. Doremus, Ceramic and Glass Materials: Structure, Properties and Processing, 1st ed. (New York: Springer, 2008), pp. 1–25.CrossRefGoogle Scholar
  35. 35.
    K.A. Matori, L.C. Wah, M. Hashim, I. Ismail, and M.H. Mohd, Zaid. Int. J. Mol. Sci. 13, 16812 (2012).CrossRefGoogle Scholar
  36. 36.
    H.J.T. Ellingham, J. Soc. Chem. Ind. 63, 125 (1944).CrossRefGoogle Scholar
  37. 37.
    S.M. Howard, Ellingham Diagrams, Internet resource for MET320Metallurgical Thermodynamics, South Dakota School of Mines and Technology, Rapid City, SD.
  38. 38.
    M. Del Giacco, A. Weisenburger, A. Jianu, F. Lang, and G. Mueller, J. Nucl. Mater. 421, 39 (2012).CrossRefGoogle Scholar
  39. 39.
    J. Young, Oxidation of Alloys I: Single Phase Scales, 2nd ed. (Amsterdam: Elsevier, 2008), pp. 185–246.Google Scholar
  40. 40.
    B.A. Pint, M. Treska, and L.W. Hobbs, Oxid. Met. 47, 1 (1997).CrossRefGoogle Scholar
  41. 41.
    J.M. Herbelin and M. Mantel, J. Phys. (France) 4, 365 (1995).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. P. Popovic
    • 1
  • Y. Yang
    • 1
  • A. M. Bolind
    • 1
  • V. B. Ozdol
    • 2
  • D. L. Olmsted
    • 3
  • M. Asta
    • 3
  • P. Hosemann
    • 1
  1. 1.Department of Nuclear EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.National Center for Electron Microscopy, The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations