Skip to main content
Log in

Facile Synthesis of Anatase TiO2 Nanospheres as Anode Materials for Sodium-Ion Batteries

  • Advanced Materials for Energy Storage and Conversion Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanospheres (ATNSs) were successfully prepared through a facile solvothermal method followed by a thermal treatment. The sample was characterized by scanning electrons microscopy, transmission electron microscopy, x-ray diffraction, Raman spectrum and nitrogen adsorption techniques. When tested as an anode material for sodium-ion batteries, the electrode of ATNSs delivered a large discharge capacity of 208 mAh g−1 after 100 cycles at a current density of 50 mA g−1, indicating excellent cycling performance. This could be attributed to the uniform structure of the nanospheres with large surface area and porous nature, providing more active sites, buffering volume change, and facilitating the sodium ion intercalation as well as rapid diffusion during the charge/discharge process. Cyclic voltammetry demonstrated that the sodium storage mechanism is mainly controlled by pseudocapacitive behavior, resulting in a large capacity and outstanding cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, and K. Kang, Adv. Energy Mater. 6, 1600943 (2016).

    Article  Google Scholar 

  2. F. Wan, J.Z. Guo, X.H. Zhang, J.P. Zhang, H.Z. Sun, Q. Yan, D.X. Han, L. Niu, and X.L. Wu, ACS Appl. Mater. Interfaces. 8, 7790 (2016).

    Article  Google Scholar 

  3. Y.-Y. Wang, B.-H. Hou, J.-Z. Guo, Q.-L. Ning, W.-L. Pang, J. Wang, C.-L. Lü, and X.-L. Wu, Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703252.

    Google Scholar 

  4. D. Yan, C. Yu, Y. Bai, W. Zhang, T. Chen, B. Hu, Z. Sun, and L. Pan, Chem. Commun. 51, 8261 (2015).

    Article  Google Scholar 

  5. Z. Qiang, Y.-M. Chen, B. Gurkan, Y. Guo, M. Cakmak, K.A. Cavicchi, Y. Zhu, and B.D. Vogt, Carbon 116, 286 (2017).

    Article  Google Scholar 

  6. J. Xiang, W. Lv, C. Mu, J. Zhao, and B. Wang, J. Alloys Compd. 701, 870 (2017).

    Article  Google Scholar 

  7. H.S. Shin, K.N. Jung, Y.N. Jo, M.S. Park, H. Kim, and J.W. Lee, Sci. Rep. 6, 26195 (2016).

    Article  Google Scholar 

  8. B.H. Hou, Y.Y. Wang, J.Z. Guo, Y. Zhang, Q.L. Ning, Y. Yang, W.H. Li, J.P. Zhang, X.L. Wang, and X.L. Wu, ACS Appl. Mater. Interfaces 10, 3581 (2018).

    Article  Google Scholar 

  9. Y.-Y. Wang, B.-H. Hou, Y.-N. Wang, H.-Y. Lü, J.-Z. Guo, Q.-L. Ning, J.-P. Zhang, C.-L. Lü, and X.-L. Wu, J. Mater. Chem. A 6, 6578 (2018).

    Article  Google Scholar 

  10. Z. Bi, M.P. Paranthaman, P.A. Menchhofer, R.R. Dehoff, C.A. Bridges, M. Chi, B. Guo, X.-G. Sun, and S. Dai, J. Power Sources 222, 461 (2013).

    Article  Google Scholar 

  11. T. Lan, T. Wang, W. Zhang, N.-L. Wu, and M. Wei, J. Alloys Compd. 699, 455 (2017).

    Article  Google Scholar 

  12. M. Søndergaard, K.J. Dalgaard, E.D. Bøjesen, K. Wonsyld, S. Dahl, and B.B. Iversen, J. Mater. Chem. A 3, 18667 (2015).

    Article  Google Scholar 

  13. H. Yang and J.-G. Duh, RSC Adv. 6, 37160 (2016).

    Article  Google Scholar 

  14. X. Yang, C. Wang, Y. Yang, Y. Zhang, X. Jia, J. Chen, and X. Ji, J. Mater. Chem. A 3, 8800 (2015).

    Article  Google Scholar 

  15. H. Liao, L. Xie, Y. Zhang, X. Qiu, S. Li, Z. Huang, H. Hou, and X. Ji, Electrochim. Acta 219, 227 (2016).

    Article  Google Scholar 

  16. B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu, P. Zhang, Z. Cheng, H.K. Liu, and Z. Huang, ACS Appl. Mater. Interfaces 8, 16009 (2016).

    Article  Google Scholar 

  17. Y. Wu, X. Liu, Z. Yang, L. Gu, and Y. Yu, Small 12, 3522 (2016).

    Article  Google Scholar 

  18. W. Zhang, T. Lan, T. Ding, N.-L. Wu, and M. Wei, J. Power Sources 359, 64 (2017).

    Article  Google Scholar 

  19. F. Wu, R. Luo, M. Xie, L. Li, X. Zhang, L. Zhao, J. Zhou, K. Wang, and R. Chen, J. Power Sources 362, 283 (2017).

    Article  Google Scholar 

  20. B. Hao, Y. Yan, X. Wang, and G. Chen, ACS Appl. Mater. Interfaces 5, 6285 (2013).

    Article  Google Scholar 

  21. Z. Hong, K. Zhou, Z. Huang, and M. Wei, Sci. Rep. 5, 11960 (2015).

    Article  Google Scholar 

  22. K.T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.K. Sun, J. Lu, K. Amine, and S.T. Myung, Nano Lett. 14, 416 (2014).

    Article  Google Scholar 

  23. Y. Ge, J. Zhu, Y. Lu, C. Chen, Y. Qiu, and X. Zhang, Electrochim. Acta 176, 989 (2015).

    Article  Google Scholar 

  24. V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

    Article  Google Scholar 

  25. S. Li, J.X. Qiu, C. Lai, M. Ling, H.J. Zhao, and S.Q. Zhang, Nano Energy 12, 224 (2015).

    Article  Google Scholar 

  26. Y. Liu, J. Liu, D. Bin, M. Hou, A.G. Tamirat, Y. Wang, and Y. Xia, ACS Appl. Mater. Interfaces 10, 14818 (2018).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science Foundation of China (Nos. 51474057, 51774076 and 51704063) and Fundamental Research Funds for the Central Universities (Nos. N172507011 and N172506010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, Y. & Li, M. Facile Synthesis of Anatase TiO2 Nanospheres as Anode Materials for Sodium-Ion Batteries. JOM 70, 1411–1415 (2018). https://doi.org/10.1007/s11837-018-2943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2943-8

Navigation