Advertisement

JOM

, Volume 70, Issue 7, pp 1182–1189 | Cite as

Fatigue Damage Assessment Leveraging Nondestructive Evaluation Data

  • K. Mazur
  • B. Wisner
  • A. Kontsos
Data-driven Material Investigations: Understanding Fatigue Behavior

Abstract

Fatigue in materials depends on several microstructural parameters. The length and time scales involved in such processes have been investigated by characterization methods that target microstructural effects or that rely on specimen-level observations. Combinations of in situ and ex situ techniques are also used to correlate microstructural changes to bulk properties. We present herein an effort to directly link local changes with specimen-level fatigue damage assessment. To achieve this goal, grain-scale observations in an aluminum alloy are linked with deformation measurements made by digital image correlation and with acoustic emission monitoring obtained from inside the scanning electron microscope. Damage assessment is attempted using a data-processing framework that involves noise removal, data reduction, and classification. The results demonstrate that nondestructive evaluation combined with small-scale testing can provide a means for fatigue damage assessment applicable to a broad range of materials and testing conditions.

Notes

Acknowledgements

A. Kontsos would like to acknowledge financial support received by the Office of Naval Research Under Award #N00014-14-1-0571.

Supplementary material

11837_2018_2882_MOESM1_ESM.pdf (321 kb)
Supplementary material 1 (PDF 321 kb)

References

  1. 1.
    D.G. Aggelis, E.Z. Kordatos, and T.E. Matikas, Mech. Res. Commun. 38, 106 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Akiniwa, K. Tanaka, and E. Matsui, Mater. Sci. Eng. A Struct. 104, 105 (1988).CrossRefGoogle Scholar
  3. 3.
    L.P. Borrego, J.M. Costa, S. Silva, and J.M. Ferreira, Int. J. Fatigue 26, 1321 (2004).CrossRefGoogle Scholar
  4. 4.
    P.A. Vanniamparambil, U. Guclu, and A. Kontsos, Exp. Mech. 55, 837 (2015).CrossRefGoogle Scholar
  5. 5.
    T.M. Roberts and M. Talebzadeh, J. Constr. Steel Res. 59, 695 (2003).CrossRefGoogle Scholar
  6. 6.
    Z. Zhong, X. Ai, Z. Liu, J. Liu, and Q. Xu, Int. J. Adv. Manuf. Technol. Int. 78, 281 (2014).CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, H.-J. Shi, J. Gu, C. Li, K. Kadau, and O. Luesebrink, Theor. Appl. Fract. Mech. 69, 80 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Payne, G. Welsh, R.J. Christ, J. Nardiello, and J.M. Papazian, Int. J. Fatigue 32, 247 (2010).CrossRefGoogle Scholar
  9. 9.
    F. Pierron, M. Sutton, and V. Tiwari, Exp. Mech. 51, 537 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Abanto-Bueno and J. Lambros, Eng. Fract. Mech. 69, 1695 (2002).CrossRefGoogle Scholar
  11. 11.
    A.H. Cannon, J.D. Hochhalter, A.W. Mello, G.F. Bomarito, and M.D. Sangid, Microsc. Microanal. 21, 451 (2015).CrossRefGoogle Scholar
  12. 12.
    R. Carmi, P.A. Vanniamparambil, J. Cuadra, K. Hazeli, S. Rajaram, U. Guclu, A. Bussiba, I. Bartoli, and A. Kontsos, Advances in Acoustic Emission Technology, ed. G. Shen, Z. Wu, and J. Zhang (New York: Springer, 2015), pp. 605–622.Google Scholar
  13. 13.
    J.D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu, Int. J. Fatigue 57, 140 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Kammers and S. Daly, Meas. Sci. Technol. 22, 125501 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Khan, I. Bartoli, S. Rajaram, P. Vanniamparambil, A. Kontsos, M. Bolhassani, and A. Hamid, SPIE 9063, 90630B (2014).Google Scholar
  16. 16.
    P.A. Vanniamparambil, J. Cuadra, U. Guclu, I. Bartoli, and A. Kontsos, SPIE 9064, 906411 (2014).Google Scholar
  17. 17.
    M.N. Bassim, S.S. Lawrence, and C.D. Liu, Eng. Fract. Mech. 47, 207 (1994).CrossRefGoogle Scholar
  18. 18.
    C. Scala and S.M. Cousland, J. Mater. Sci. Eng. 61, 211 (1983).CrossRefGoogle Scholar
  19. 19.
    P. Vanniamparambil, U. Guclu, and A. Kontsos, Exp. Mech. 55, 837 (2015).CrossRefGoogle Scholar
  20. 20.
    B.R. Tittmann and O. Buck, J. Nondestr. Eval. Diagn. Progn. Eng. Syst. 1, 123 (1980).CrossRefGoogle Scholar
  21. 21.
    T.M. Roberts and M. Talebzadeh, J. Constr. Steel Res. 59, 679 (2003).CrossRefGoogle Scholar
  22. 22.
    F. Bridier, D.L. McDowell, P. Villechaise, and J. Mendez, Int. J. Plast 25, 1066 (2009).CrossRefGoogle Scholar
  23. 23.
    A. Merati, Int. J. Fatigue 27, 33 (2005).CrossRefGoogle Scholar
  24. 24.
    J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr, M.G. Veilleux, J.E. Bozek, A.R. Ingraffea and A.M. Maniatty, Modell. Simul. Mater. Sci. Eng., 18, 045004 (2010)CrossRefGoogle Scholar
  25. 25.
    J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr, M.G. Veilleux, J.E. Bozek, A.R. Ingraffea and A.M. Maniatty, Modell. Simul. Mater. Sci. Eng., 19, 035008 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Bian, Y. Chen, J. Hu, and M. Yang, in The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, ed. G. Shen, Z. Wu, and J. Zhang (New Jersey: IEEE, 2011), pp. 416–419.Google Scholar
  27. 27.
    C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, and D.B. Miracle, Scr. Mater. 55, 465 (2006).CrossRefGoogle Scholar
  28. 28.
    B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler, Adv. Eng. Mater. 7, 388 (2005).CrossRefGoogle Scholar
  29. 29.
    B. Wisner and A. Kontsos, Fatigue Fract. Eng. Mater. Struct. 41, 581 (2017).CrossRefGoogle Scholar
  30. 30.
    V. Patel and R. Mehta, in Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) (New York, NY: Springer, 2011), pp. 691–700.Google Scholar
  31. 31.
    H. Bi, Z. Li, D. Hu, I. Toku-Gyamerah, and Y. Cheng, Materialwiss. Werkstofftech. 46, 736 (2015).CrossRefGoogle Scholar
  32. 32.
    R. Gutkin, C.J. Green, S. Vangrattanachai, S.T. Pinho, P. Robinson, and P.T. Curtis, Mech. Syst. Signal Process. 25, 1393 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Wevers, NDT&E Int. 30, 99 (1997).CrossRefGoogle Scholar
  34. 34.
    P.A. Vanniamparambil, I. Bartoli, K. Hazeli, J. Cuadra, E. Schwartz, R. Saralaya, and A. Kontsos, in Proceedings of SPIEThe International Society for Optical Engineering (2012), p. 83482J .Google Scholar
  35. 35.
    B. Wisner and A. Kontsos, Fracture, Fatigue, Failure and Damage Evolution, Vol. 1 (New York: Springer, 2017), pp. 1–8.CrossRefGoogle Scholar
  36. 36.
    B. Wisner, M. Cabal, P. Vanniamparambil, J. Hochhalter, W. Leser, and A. Kontsos, Exp. Mech. 55, 1705 (2015).CrossRefGoogle Scholar
  37. 37.
    B. Wisner and A. Kontsos, in Fracture, Fatigue, Failure and Damage Evolution, Vol. 1, ed. 37. A.T. Zehnder, J. Carroll, K. Hazeli, R.B. Berke, G. Pataky, M. Cavalli, A.M. Beese, and S. Xia (New York: Springer, 2017), pp. 1–8.Google Scholar
  38. 38.
    L. Al Shalabi and Z. Shaaban, in International Conference on Dependability of Computer Systems (Wroclaw, Poland: DepCos-RELCOMEX’06, 2006), pp. 207–214.Google Scholar
  39. 39.
    S. Azrour, S. Piérard, P. Geurts, and M. Van Droogenbroeck, in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (Bruges, Belgium: ESANN, 2014), pp. 649–654.Google Scholar
  40. 40.
    C. Colantuoni, G. Henry, S. Zeger, and J. Pevsner, Bioinformatics 18, 1540–1541 (2002).CrossRefGoogle Scholar
  41. 41.
    C. Boutsidis, M.W. Mahoney, and P. Drineas, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Las Vegas, Nevada: SIGKDD, 2008), pp. 61–69Google Scholar
  42. 42.
    J.E. Jackson, A User’s Guide to Principal Components, Vol. 1 (Hoboken, NY: Wiley, 2004).zbMATHGoogle Scholar
  43. 43.
    C. Aggarwal, Data Mining (New York, NY: Springer, 2015), pp. 237–263.Google Scholar
  44. 44.
    K. Worden, G. Manson, and N.R. Fieller, J. Sound Vib. 229, 647 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Theoretical and Applied Mechanics Group, Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations