, Volume 70, Issue 6, pp 1031–1036 | Cite as

Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

  • Jing-peng Wang
  • Yi-min Zhang
  • Jing Huang
  • Tao Liu
Technical Communication


The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1–3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.



This study was supported by the Project of National Natural Science Foundation of China (Nos. 51474162 and 51404174) and the Key Science and Technology Support Programs (No. 2015BAB18B01).

Supplementary material

11837_2018_2859_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (PDF 123 kb)


  1. 1.
    Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallurgy 109, 116 (2011).CrossRefGoogle Scholar
  2. 2.
    G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and Z.L. Liu, Int. J. Miner. Metall. Mater. 22, 21 (2015).CrossRefGoogle Scholar
  3. 3.
    P.C. Hu, Y.M. Zhang, T. Liu, J. Huang, Y.Z. Yuan, and Q.S. Zheng, Ind. Eng. Chem. 45, 241 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, and D.B. Dreisinger, J. Clean. Prod. 149, 206 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Huang, Y.M. Zhang, J. Huang, T. Liu, Z.L. Cai, and N.N. Xue, Minerals 6, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    F. Wang, Y.M. Zhang, T. Liu, J. Huang, J. Zhao, G.B. Zhang, and J. Liu, Int. J. Miner. Process. 128, 40 (2014).CrossRefGoogle Scholar
  7. 7.
    S.U. Bayca, Sep. Purify. Technol. 105, 24 (2013).CrossRefGoogle Scholar
  8. 8.
    V. Madakkaruppan and A. Pius, J. Hazard. Mater. 313, 9 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Al-Harahsheh and S.W. Kingman, Chem. Eng. Process. 47, 1246 (2008).CrossRefGoogle Scholar
  10. 10.
    B. Adnadjevic, B. Koturevic, and J. Jovanovic, Chem. Eng. Res. Des. 118, 61 (2017).CrossRefGoogle Scholar
  11. 11.
    G. Chen, J. Chen, Z.Y. Zhang, S.H. Guo, Z.B. Zhang, and J.H. Peng, Metallurgist 57, 647 (2013).CrossRefGoogle Scholar
  12. 12.
    I.S.S. Pinto and H.M.V.M. Soares, Hydrometallurgy 140, 20 (2013).CrossRefGoogle Scholar
  13. 13.
    J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Int. J. Miner. Metall. Mater. 24, 156 (2017).CrossRefGoogle Scholar
  14. 14.
    C.G. Anderson, Miner. Eng. 92, 248 (2016).CrossRefGoogle Scholar
  15. 15.
    J.Y. Ma, S. Zhang, R.L. Lv, W.G. Wang, Y.H. Qin, and C.W. Wang, Sep. Purif. Technol. 52, 132 (2017).Google Scholar
  16. 16.
    M. Lampinen, S. Seisko, O. Forsström, A. Laaria, J. Aromaa, M. Lundström, and T. Koiranen, Hydrometallurgy 169, 103 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Mohammad, Z.I. Zafar, and A.T. Mahmood, Hydrometallurgy 80, 286 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Karimi, F. Rashchi, and J. Moghaddam, Int. J. Miner. Process. 162, 58 (2017).CrossRefGoogle Scholar
  19. 19.
    X.B. Zhu, Y.M. Zhang, J. Huang, T. Liu, and Y. Wang, Int. J. Miner. Process. 114–117, 1 (2012).Google Scholar
  20. 20.
    F.K. Crundwell, Hydrometallurgy 149, 265 (2014).CrossRefGoogle Scholar
  21. 21.
    B. Terry, Hydrometallurgy 10, 135 (1983).CrossRefGoogle Scholar
  22. 22.
    O. Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999), pp. 103–160.Google Scholar
  23. 23.
    V.V. Zhukov, A. Laari, M. Lampinen, and T. Koiranen, Chem. Eng. Res. Des. 118, 131 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium ResourceWuhanChina
  2. 2.Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium ResourceWuhanChina
  3. 3.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations