Fast Slip Velocity in a High-Entropy Alloy

Abstract

Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au〈001〉 and an Al0.3CoCrFeNi〈001〉 high-entropy alloy, but much faster than in Nb〈001〉. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity–size distributions. The results are discussed in view of the underlying dislocation mobility.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  2. 2.

    J.W. Yeh, Annales de Chimie Science des Materiaux (Paris) 31, 633 (2006).

    Article  Google Scholar 

  3. 3.

    H. Oh, D. Ma, G. Leyson, B. Grabowski, E. Park, F. Körmann, and D. Raabe, Entropy 18, 321 (2016).

    Article  Google Scholar 

  4. 4.

    J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Metall. Mater. Trans. A 35A, 2533 (2004).

    Article  Google Scholar 

  5. 5.

    B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st edn. Elsevier.

  6. 6.

    S. Maiti and W. Steurer, Acta Mater. 106, 87 (2016).

    Article  Google Scholar 

  7. 7.

    Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Acta Mater. 65, 85 (2014).

    Article  Google Scholar 

  8. 8.

    J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson, Rev. Adv. Mater. Sci. 48, 105 (2017).

    Google Scholar 

  9. 9.

    A.V. Podolskiy, E.D. Tabachnikova, V.V. Voloschuk, V.F. Gorban, N.A. Krapivka, and S.A. Firstov, Mater. Sci. Eng. A 710, 136 (2018).

    Article  Google Scholar 

  10. 10.

    S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji, Scripta Mater. 134, 33 (2017).

    Article  Google Scholar 

  11. 11.

    Y.Y. Zhao and T.G. Nieh, Intermetallics 86, 45 (2017).

    Article  Google Scholar 

  12. 12.

    H. Neuhäuser, Dislocations Solids 6, 319 (1983).

    Google Scholar 

  13. 13.

    T.K. Liu, Z. Wu, A.D. Stoica, Q. Xie, W. Wu, Y.F. Gao, H. Bei, and K. An, Mater. Des. 131, 419 (2017).

    Article  Google Scholar 

  14. 14.

    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  15. 15.

    Q. Lin, X. An, H. Liu, Q. Tang, P. Dai, and X. Liao, J. Alloys Compd. 709, 802 (2017).

    Article  Google Scholar 

  16. 16.

    J. Liu, C. Chen, Y. Xu, S. Wu, G. Wang, H. Wang, Y. Fang, and L. Meng, Scr. Mater. 137, 9 (2017).

    Article  Google Scholar 

  17. 17.

    J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills, Acta Mater. 132, 35 (2017).

    Article  Google Scholar 

  18. 18.

    S.I. Rao, C. Woodward, T.A. Parthasarathy, and O. Senkov, Acta Mater. 134, 188 (2017).

    Article  Google Scholar 

  19. 19.

    S. Zhao, Y.N. Osetsky, and Y. Zhang, J. Alloys Compd. 701, 1003 (2017).

    Article  Google Scholar 

  20. 20.

    W.G. Nöhring and W.A. Curtin, Acta Mater. 128, 135 (2017).

    Article  Google Scholar 

  21. 21.

    S. Zhao, G.M. Stocks, and Y. Zhang, Acta Mater. 134, 334 (2017).

    Article  Google Scholar 

  22. 22.

    G. Sparks, P.S. Phani, U. Hangen, and R. Maass, Acta Mater. 122, 109 (2017).

    Article  Google Scholar 

  23. 23.

    R. Maass, P.M. Derlet, and J.R. Greer, Small 11, 341 (2015).

    Article  Google Scholar 

  24. 24.

    R. Maass, P.M. Derlet, and J.R. Greer, Scr. Mater. 69, 586 (2013).

    Article  Google Scholar 

  25. 25.

    M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng., A 400–401, 268 (2005).

    Article  Google Scholar 

  26. 26.

    R.X. Li, P.K. Liaw, and Y. Zhang, Mater. Sci. Eng. A 707, 668 (2017).

    Article  Google Scholar 

  27. 27.

    W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  28. 28.

    R. Maass, C.A. Volkert, and P.M. Derlet, Scr. Mater. 102, 27 (2015).

    Article  Google Scholar 

  29. 29.

    R. Maass, M. Wraith, J.T. Uhl, J.R. Greer, and K.A. Dahmen, Phys. Rev. E 91, 042403 (2015).

    Article  Google Scholar 

  30. 30.

    J. Alstott, E. Bullmore, and D. Plenz, PLoS One 9 (4), e95816 (2014). https://doi.org/10.1371/journal.pone.0085777.

    Article  Google Scholar 

  31. 31.

    D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188 (2006).

    Article  Google Scholar 

  32. 32.

    M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, and E. Arzt, Phil. Mag. 88, 3861 (2008).

    Article  Google Scholar 

  33. 33.

    N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, and K.A. Dahmen, Phys. Rev. Lett. 109, 095507 (2012).

    Article  Google Scholar 

  34. 34.

    F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Science 318, 251 (2007).

    Article  Google Scholar 

  35. 35.

    R. Maass and P.M. Derlet, Acta Mater. 143, 338 (2018).

    Article  Google Scholar 

  36. 36.

    J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, and K.A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014).

    Article  Google Scholar 

  37. 37.

    M. LeBlanc, L. Angheluta, K. Dahmen, and N. Goldenfeld, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87, 022126 (2013).

    Article  Google Scholar 

  38. 38.

    A. Dobrinevski, P. Le Doussal, and K.J. Wiese, EPL (Europhysics Letters) 108, 66002 (2014).

    Article  Google Scholar 

  39. 39.

    G. Sparks and R. Maass, Acta Mater. (2018). https://doi.org/10.1016/j.actamat.2018.04.007.

  40. 40.

    W.G. Nöhring, Dislocation Cross-Slip in Face-Centered Cubic Solid Solution Alloys, École Polytechnique Fédérale de Lausanne, Thesis Nr. 8383 (2018).

Download references

Acknowledgements

This research was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. G.S. and R.M. especially thank Kathy Walsh for experimental support with the Hysitron TriboIndenter. R.M. would like to thank P.M. Derlet for fruitful discussions, and is grateful for financial support by the NSF CAREER program (grant NSF DMR 1654065), and for start-up funds provided by the Department of Materials Science and Engineering at UIUC. The authors also thank P. Liaw for providing the HEA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Maaß.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizzardi, Q., Sparks, G. & Maaß, R. Fast Slip Velocity in a High-Entropy Alloy. JOM 70, 1088–1093 (2018). https://doi.org/10.1007/s11837-018-2856-6

Download citation