Advertisement

JOM

, Volume 70, Issue 7, pp 1068–1073 | Cite as

Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

  • S. K. Lawrence
  • B. P. Somerday
  • M. D. Ingraham
  • D. F. Bahr
Mechanical Behavior at the Nanoscale
  • 219 Downloads

Abstract

Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~ 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c44 decreases ~ 20% after hydrogen exposure. Furthermore, clear hydrogen–deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

Notes

Acknowledgements

This work was performed while SKL was affiliated with Sandia National Laboratories and was supported by the DOE NNSA Stewardship Science Graduate Fellowship [Grant DE-NA0002135] and the Laboratory Directed Research and Development program at Sandia National Laboratories [Grant SNL-LDRD-173116], a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525. SAND2018-2771J.

References

  1. 1.
    S.P. Lynch, Corros. Sci. 22, 925 (1982).CrossRefGoogle Scholar
  2. 2.
    W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Mechanical Modelling and Future Developments, Vol. 2, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 209–246.CrossRefGoogle Scholar
  3. 3.
    H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).CrossRefGoogle Scholar
  4. 4.
    R. Oriani and P. Joshephic, Acta Metall. 22, 1065 (1974).CrossRefGoogle Scholar
  5. 5.
    M. Nagumo, Mater. Sci. Technol. 20, 940 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scr. Mater. 43, 245 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Kameda and C. McMahon, Metall. Mater. Trans. A 11, 91 (1980).CrossRefGoogle Scholar
  8. 8.
    W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).CrossRefGoogle Scholar
  9. 9.
    R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).CrossRefGoogle Scholar
  10. 10.
    S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).CrossRefGoogle Scholar
  11. 11.
    S.K. Lawrence, B.P. Somerday, N.R. Moody, and D.F. Bahr, JOM J. Miner. Met. Mater. Soc. 66, 1383 (2014).CrossRefGoogle Scholar
  12. 12.
    S.K. Lawrence, B.P. Somerday, and R.A. Karnesky, JOM J. Miner. Met. Mater. Soc. 69, 45 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Sieborger, H. Knake, and U. Glatzel, Mater. Sci. Eng. A 298, 26 (2001).CrossRefGoogle Scholar
  14. 14.
    M. Wen, A. Barnoush, and K. Yokogawa, Comput. Phys. Commun. 182, 1621 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Barnoush and H. Vehoff, Scr. Mater. 55, 195 (2006).CrossRefGoogle Scholar
  16. 16.
    R.E. Green, Treatise on Materials Science: Ultrasonic Investigation of Mechanical Properties (New York: Academic Press, 1973).Google Scholar
  17. 17.
    J. De Klerk, Proc. Phys. Soc. 73, 337 (1959).CrossRefGoogle Scholar
  18. 18.
    J.R. Neighbours, F.W. Bratten, and C.S. Smith, J. Appl. Phys. 23, 389 (1952).CrossRefGoogle Scholar
  19. 19.
    A. Zielnski, Acta. Met. Mater. 38, 2573 (1990).CrossRefGoogle Scholar
  20. 20.
    S.K. Lawrence, Y. Yagodzinskyy, H. Hänninen, F. Tuomisto, E. Korhonen, Z.D. Harris, and B.P. Somerday, Acta Mater. 128, 218 (2017).CrossRefGoogle Scholar
  21. 21.
    H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973).CrossRefGoogle Scholar
  22. 22.
    J. Melngailis, Phys. Status Solidi 16, 247 (1966).CrossRefGoogle Scholar
  23. 23.
    P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 47, 2991 (1999).CrossRefGoogle Scholar
  24. 24.
    P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 46, 1749 (1998).CrossRefGoogle Scholar
  25. 25.
    D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. Leipner, Phys. Rev. B 67, 1 (2003).CrossRefGoogle Scholar
  26. 26.
    T.A. Michalske and J.E. Houston, Acta Mater. 46, 391 (1998).CrossRefGoogle Scholar
  27. 27.
    A.A. Zbib and D.F. Bahr, Metall. Mater. Trans. A 38, 2249 (2007).CrossRefGoogle Scholar
  28. 28.
    D.F. Bahr and G. Vasquez, J. Mater. Res. 20, 1947 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Wen, L. Zhang, B. An, S. Fukuyama, and K. Yokogawa, Phys. Rev. B Condens. Matter Mater. Phys. 80, 1 (2009).Google Scholar
  30. 30.
    A. Barnoush, M. Asgari, and R. Johnsen, Scr. Mater. 66, 414 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Barnoush, N. Kheradmand, and T. Hajilou, Scr. Mater. 108, 76 (2015).CrossRefGoogle Scholar
  32. 32.
    H. Osono, T. Kino, Y. Kurokawa, and Y. Fukai, J. Alloys Compd. 231, 41 (1995).CrossRefGoogle Scholar
  33. 33.
    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008).CrossRefGoogle Scholar
  34. 34.
    I. Salehinia and S.N. Medyanik, Metall. Mater. Trans. A 42A, 3868 (2011).CrossRefGoogle Scholar
  35. 35.
    K. Nibur, D. Bahr, and B. Somerday, Acta Mater. 54, 2677 (2006).CrossRefGoogle Scholar
  36. 36.
    R. Kirchheim, Scr. Mater. 62, 67 (2010).CrossRefGoogle Scholar
  37. 37.
    R.H.W. Honeycombe, Plastic Deformation of Metals, 2nd ed. (London: Edward Arnold, 1984).Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Sigma DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan
  4. 4.Geomechanics DepartmentSandia National LaboratoriesAlbuquerqueUSA
  5. 5.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations