Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

Abstract

Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Reprinted with permission from Ref. 40

Fig. 3

Reprinted with permission from Ref. 38 (Color figure online)

Fig. 4

Reprinted with permission from Ref. 19

Fig. 5

Reprinted with permission from Ref. 51 (Color figure online)

Fig. 6

Reprinted with permission from Ref. 18

References

  1. 1.

    S. van der Zwaag, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science (Dordrecht: Springer, 2008), pp. 1–18.

    Google Scholar 

  2. 2.

    S.K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Veinheim: Wiley, 2009), pp. 1–28.

    Google Scholar 

  3. 3.

    M. Nosonovsky and P.K. Rohatgi, Biomimetics in Materials Science: Self-Healing, Self-Lubricating, and Self-Cleaning Materials (New York: Springer, 2011), pp. 1–122.

    Google Scholar 

  4. 4.

    M. Kessler, Proc. Inst. Mech. Eng. Part G-J Aerosp. Eng. 221, 479 (2007).

    Article  Google Scholar 

  5. 5.

    R.P. Wool, Soft Matter 4, 400 (2008).

    Article  Google Scholar 

  6. 6.

    D.Y. Wu, S. Meure, and D. Solomon, Prog. Polym. Sci. 33, 479 (2008).

    Article  Google Scholar 

  7. 7.

    Y. Yuan, T. Yin, M. Rong, and M. Zhang, Express Polym. Lett. 2, 238 (2008).

    Article  Google Scholar 

  8. 8.

    M. Samadzadeh, S.H. Boura, M. Peikari, S. Kasiriha, and A. Ashrafi, Prog. Org. Coat. 68, 159 (2010).

    Article  Google Scholar 

  9. 9.

    B. Aïssa, D. Therriault, E. Haddad, and W. Jamroz, Adv. Mater. Sci. Eng. 2012, 1 (2012).

    Article  Google Scholar 

  10. 10.

    P. Zhang and G. Li, Prog. Polym. Sc. 57, 32 (2016).

    Article  Google Scholar 

  11. 11.

    D. Bekas, K. Tsirka, D. Baltzis, and A. Paipetis, Compos. Part B Eng. 87, 92 (2016).

    Article  Google Scholar 

  12. 12.

    K. Urdl, A. Kandelbauer, W. Kern, U. Müller, M. Thebault, and E. Zikulnig-Rusch, Prog. Org. Coat. 104, 232 (2017).

    Article  Google Scholar 

  13. 13.

    P.K. Rohatgi, A. Dorri, B.F. Schultz, and J. Ferguson, Paper presented at the 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8)-TMS 2013 Annual Meeting and Exhibition, Waikoloa, HI, TMS, 2013.

  14. 14.

    J. Ferguson, B.F. Schultz, and P.K. Rohatgi, JOM 66, 866 (2014).

    Article  Google Scholar 

  15. 15.

    A.D. Moghadam, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, JOM 66, 872 (2014).

    Article  Google Scholar 

  16. 16.

    K. Alaneme and M. Bodunrin, Appl. Mater. Today 6, 9 (2017).

    Article  Google Scholar 

  17. 17.

    M.V. Manuel and G.B. Olson, Paper presented at the 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, the Netherlands, 2007.

  18. 18.

    A.C. Ruzek, M.S. Thesis, University of Wisconsin-Milwaukee, 2009.

  19. 19.

    S.K. Misra, M.S. Thesis, University of Wisconsin-Milwaukee, 2013.

  20. 20.

    M. Hassan, M. Mehrpouya, S. Emamian, and M. Sheikholeslam, Adv. Mater. Res. 701, 87 (2013).

    Article  Google Scholar 

  21. 21.

    P. Rohatgi, Mater. Sci. Eng. A 619, 73 (2014).

    Article  Google Scholar 

  22. 22.

    J. Ferguson, B. Schultz, and P. Rohatgi, Mater. Sci. Eng. A 620, 85 (2015).

    Article  Google Scholar 

  23. 23.

    J. Martinez-Lucci, R. Amano, P. Rohatgi, and B. Schultz, Paper presented at the 3rd Energy Nanotechnology International Conference-ENIC2008, Jacksonville, FL, 2008.

  24. 24.

    J. Martinez-Lucci, R. Amano, P. Rohatgi, and B. Schultz, Paper presented at the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, ASME, 2008.

  25. 25.

    J. Martinez-Lucci, R. Amano, P. Rohatgi, B. Schultz, and A. Ruzek, Paper presented at the 7th International Energy Conversion Engineering Conference, Denver, CO, 2009.

  26. 26.

    J. Martinez-Lucci, A. Ruzek, S. Misra, P. Rohatgi, and R. Amano, Mod. Cast. 101, 24 (2011).

    Google Scholar 

  27. 27.

    J. Martinez-Lucci, A. Ruzek, S.K. Misra, P.K. Rohatgi, and R.S. Amano, AFS Trans. 101, 187 (2011).

    Google Scholar 

  28. 28.

    J. Martinez-Lucci, R. Amano, and P. Rohatgi, Heat Mass Transf. 53, 825 (2017).

    Article  Google Scholar 

  29. 29.

    P.E. Leser, J.A. Newman, S.W. Smith, W.P. Leser, R.A. Wincheski, T.A. Wallace, E.H. Glaessgen, and R.S. Piascik, NASA Technical Reports Server-NTRS, 2014. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140006911.pdf.

  30. 30.

    X. Zheng, Y.-N. Shi, and K. Lu, Mater. Sci. Eng. A 561, 52 (2013).

    Article  Google Scholar 

  31. 31.

    R. Lumley, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, ed. S. van der Zwaag (Amsterdam: Springer, 2007), p. 219.

    Google Scholar 

  32. 32.

    S. Hautakangas, H. Schut, S. van der Zwaag, P. Rivera Diaz del Castillo, and N. van Dijk, Paper presented at the 1st International Conference on Self Healing Materials, Noordwijk aan Zee, the Netherlands, Springer, 2007.

  33. 33.

    S. Hautakangas, H. Schut, N. Van Dijk, P.R.D. del Castillo, and S. van der Zwaag, Scr. Mater. 58, 719 (2008).

    Article  Google Scholar 

  34. 34.

    S. Van der Zwaag, N. Van Dijk, H. Jonkers, S. Mookhoek, and W. Sloof, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1689 (2009).

    Article  Google Scholar 

  35. 35.

    S. Van der Zwaag, Bull. Pol. Acad. Sci. Chem. 58, 227 (2010).

    Google Scholar 

  36. 36.

    K.K. Alaneme and O.I. Omosule, J. Miner. Mater. Charact. Eng. 3, 1 (2014).

    Google Scholar 

  37. 37.

    G. Xu and M. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013).

    Article  Google Scholar 

  38. 38.

    B. Grabowski and C.C. Tasan, Self-Healing Materials, ed. M.D. Hager, S. van der Zwaag, and U.S. Schubert (Basel: Springer, 2016), p. 387.

    Google Scholar 

  39. 39.

    R. Lumley, A. Morton, and I. Polmear, Acta Mater. 50, 3597 (2002).

    Article  Google Scholar 

  40. 40.

    R. Djugum, R. Lumley, and I. Polmear, Paper presented at the 2nd International Conference on Self Healing Materials, Chicago, IL, 2009.

  41. 41.

    N. Shinya, J. Kyono, K. Laha, and C. Masuda, Paper presented at the 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, the Netherlands, Springer, 2007.

  42. 42.

    J. Van Humbeeck, Mater. Sci. Eng. A 273, 134 (1999).

    Article  Google Scholar 

  43. 43.

    M.V. Manuel, Ph.D. Dissertation, Northwestern University, 2007.

  44. 44.

    M. Clara Wright, M. Manuel, and T. Wallace, NASA Technical Reports Server-NTRS, 2013. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140013299.pdf.

  45. 45.

    M. Manuel, Self-Healing Materials: Fundamentals, Design Strategies, and Applications, ed. S.K. Ghosh (Veinheim: Wiley, 2009), p. 251.

    Google Scholar 

  46. 46.

    M. Wright, M. Manuel, T. Wallace, A. Newman, and K. Brinson, NASA Technical Reports Server-NTRS, 2015. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150005789.pdf.

  47. 47.

    N. Salowitz, A. Correa, and A.D. Moghadam, Paper presented at the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, 2017.

  48. 48.

    S. Hartshorn, Structural Adhesives, Chemistry and Technogy (Boston: Springer, 1986), pp. 347–406.

    Google Scholar 

  49. 49.

    N.F. Kazakov, Diffusion Bonding of Materials (New York: Pergamon Press, 1981), pp. 157–169.

    Google Scholar 

  50. 50.

    D.J. Stephenson, Proceedings of the 2nd International Conference on Diffusion Bonding (London: Cranfield Institute of Technology, 1990).

    Google Scholar 

  51. 51.

    S.R. White, N. Sottos, P. Geubelle, and J. Moore, Nature 409, 794 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The author Dr. Volkan Kilicli is thankful to TÜBİTAK (The Scientific and Technological Research Council of Turkey). He has been supported by the BİDEB-2219 postdoctoral research scholarship program. The author Dr. Xiaojun Yan is thankful to Dalian University, China, for financial support as a visiting scholar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Volkan Kilicli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilicli, V., Yan, X., Salowitz, N. et al. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites. JOM 70, 846–854 (2018). https://doi.org/10.1007/s11837-018-2835-y

Download citation