, Volume 70, Issue 6, pp 894–905 | Cite as

Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

  • Rakan Alturk
  • Louis G. HectorJr.
  • C. Matthew Enloe
  • Fadi Abu-Farha
  • Tyson W. Brown
Shaping & Forming of Advanced High Strength Steels


The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α′-martensite either directly or through ε-martensite. Uniaxial strain rates within the range of 0.005–500 s−1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (rn) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and rn with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.



The authors gratefully acknowledge the Colorado School of Mines and AK Steel for development of the intercritical annealing heat treatment and for supplying the material used in this study. The authors are especially gratefully to Prof. D.M. Matlock, Dr. G. Thomas, and Mr. E. McCarty for many helpful discussions on multiphase third-generation AHSSs. This material is based upon work supported by the Department of Energy under Cooperative Agreement Number DE-EE0005976, with United States Automotive Materials Partnership LLC (USAMP). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


  1. 1.
    S. Keeler and M. Kimchi, WorldAutoSteel, V5, 2015.Google Scholar
  2. 2.
    C.D. Horvath, C.M. Enloe, J.P. Singh, and J.J. Coryell, in International Symposium on New Developments in Advanced High-Strength Sheet Steels (2017), p. 1.Google Scholar
  3. 3.
    M. Rashid, Annu. Rev. Mater. Sci. 11, 245 (1981).CrossRefGoogle Scholar
  4. 4.
    V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch, ASM Trans. Q. 60, 252 (1967).Google Scholar
  5. 5.
    E. De Moor, P. Gibbs, J. Speer, D. Matlock, and J. Schroth, Iron Steel Technol. 7, 132 (2010).Google Scholar
  6. 6.
    A. Clarke, J. Speer, M. Miller, R. Hackenberg, D. Edmonds, D. Matlock, et al., Acta Mater. 56, 16 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Gibbs, E. De Moor, M. Merwin, B. Clausen, J. Speer, and D. Matlock, Metall. Mater. Trans. A 42, 3691 (2011).CrossRefGoogle Scholar
  8. 8.
    X. Hu, X. Sun, L.G. Hector, and Y. Ren, Acta Mater. 132, 230 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Takaki, H. Nakatsu, and Y. Tokunaga, Mater. Trans. JIM 34, 489 (1993).CrossRefGoogle Scholar
  10. 10.
    B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock, Metall. Mater. Trans. A 44, 2563 (2013).CrossRefGoogle Scholar
  11. 11.
    F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, Jr., G. Thomas, and T.W. Brown, Metall. Mater. Trans. A (2018) (in press).Google Scholar
  12. 12.
    G. Olson and M. Cohen, Metall. Mater. Trans. A 6, 791 (1975).CrossRefGoogle Scholar
  13. 13.
    J. Benzing, W. Poling, D. Pierce, J. Bentley, K. Findley, D. Raabe, et al., Mater. Sci. Eng. 711, 78 (2018).CrossRefGoogle Scholar
  14. 14.
    P. Zavattieri, V. Savic, L. Hector Jr., J. Fekete, W. Tong, and Y. Xuan, Int. J. Plast. 25, 2298 (2009).CrossRefGoogle Scholar
  15. 15.
    W. Wu, Y.-W. Wang, P. Makrygiannis, F. Zhu, G.A. Thomas, L.G. Hector, et al., Mater. Sci. Eng. 711, 611 (2018).CrossRefGoogle Scholar
  16. 16.
    V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild, Int. J. Solids Struct. 45, 601 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Huh, S.-B. Kim, J.-H. Song, and J.-H. Lim, Int. J. Mech. Sci. 50, 918 (2008).CrossRefGoogle Scholar
  18. 18.
    H. Huh, H. Lee, and J. Song, Int. J. Automot. Technol. 13, 43 (2012).CrossRefGoogle Scholar
  19. 19.
    R. Alturk, S. Mates, Z. Xu, and F. Abu-Farha, in TMS 2017 146th Annual Meeting and Exhibition Supplemental Proceedings (2017), p. 243.Google Scholar
  20. 20.
    S. Xu, D. Ruan, J.H. Beynon, and Y. Rong, Mater. Sci. Eng. 573, 132 (2013).CrossRefGoogle Scholar
  21. 21.
    J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee, Mater. Sci. Eng. 559, 222 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, and F. Lu, Mater. Sci. Eng. 586, 62 (2013).CrossRefGoogle Scholar
  23. 23.
    X. Yang, L.G. Hector, and J. Wang, Exp. Mech. 54, 775 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Li, D. Zou, C. Xia, and J. He, Steel Res. Int. 87, 1302 (2016).CrossRefGoogle Scholar
  25. 25.
    B.C. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, and S.J. Kim, Mater. Sci. Technol. 21, 967 (2013).CrossRefGoogle Scholar
  26. 26.
    S.F. Peterson, M. Mataya, and D. Matlock, JOM 49, 54 (1997).CrossRefGoogle Scholar
  27. 27.
    M.P. Pereira and B.F. Rolfe, J. Mater. Process. Technol. 214, 1749 (2014).CrossRefGoogle Scholar
  28. 28.
    I. Choi, D. Son, S. Kim, D.K. Matlock, and J.G. Speer, SAE Technical Paper 0148-7191 (2006).Google Scholar
  29. 29.
    H. Hayashi and T. Nakagawa, J. Mater. Process. Technol. 46, 455 (1994).CrossRefGoogle Scholar
  30. 30.
    D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector, and A. Bower, Int. J. Fract. 209, 1 (2017).Google Scholar
  31. 31.
    F. Andrade, M. Feucht, A. Haufe, and F. Neukamm, Int. J. Fract. 200, 127 (2016).CrossRefGoogle Scholar
  32. 32.
    I. Choi, D. Kim, S. Kim, D. Bruce, D. Matlock, and J. Speer, Met. Mater. Int. 12, 13 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Oliver, T.B. Jones, and G. Fourlaris, Mater. Charact. 58, 390 (2007).CrossRefGoogle Scholar
  34. 34.
    B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie Jr., Appl. Mech. Rev. 57, 223 (2004).CrossRefGoogle Scholar
  35. 35.
    J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek, and B. De Cooman, Metall. Mater. Trans. A 37, 1527 (2006).CrossRefGoogle Scholar
  36. 36.
    G.T. Gray III, ASM Handbook, Mechanical Testing and Evaluation (Russel Township, Ohio: ASM International, 2000), vol. 8, p. 462.Google Scholar
  37. 37.
    H. Huh, W. Kang, and S. Han, Exp. Mech. 42, 8 (2002).CrossRefGoogle Scholar
  38. 38.
    W.W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (New York: Springer Science & Business Media, 2010).zbMATHGoogle Scholar
  39. 39.
    S. Mates and F. Abu-Farha, Dyn. Behav. Mater. 1, 155 (2016).Google Scholar
  40. 40.
    J. Huh, H. Huh, and C.S. Lee, Int. J. Plast. 44, 23 (2013).CrossRefGoogle Scholar
  41. 41.
    M.T. Rahmaan, Low to high strain rate characterization of DP600, TRIP780, AA5182-O, University of Waterloo (2015).Google Scholar
  42. 42.
    W. Li, J. Zhu, Y. Xia, and Q. Zhou, ASME 2015 International Mechanical Engineering Congress and Exposition (2015).Google Scholar
  43. 43.
    V. Savic, L. Hector, U. Basu, A. Basudhar, I. Gandikota, N. Stander et al., SAE Technical Paper 0148-7191, 2017.Google Scholar
  44. 44.
    E. ISO, 6892-1. Metallic materials-Tensile testing-Part 1: Method of test at room temperature, International Organization for Standardization (2009).Google Scholar
  45. 45.
    B. Yan, Y. Kuriyama, A. Uenishi, D. Cornette, M. Borsutzki, and C. Wong, SAE Technical Paper 0148-7191, 2006Google Scholar
  46. 46.
    M. Borsutzki, D. Cornette, Y. Kuriyama, A. Uenishi, B. Yan, and E. Opbroek, Rep. Proc., Annu. Conf. [Int. Iron Steel Inst.], 30 (2005).Google Scholar
  47. 47.
    Y. Wang, H. Xu, D.L. Erdman, M.J. Starbuck, and S. Simunovic, Adv. Eng. Mater. 13, 943 (2011).CrossRefGoogle Scholar
  48. 48.
    International Organization for Standardization. (2011). Metallic materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and other test systems, 1st ed. (2011).Google Scholar
  49. 49.
    S.-E.-P. S. d. S. VDEh, SEP1230. The determination of the mechanical properties of sheet metal at high strain rates in high-speed tensile tests, ed. (2006).Google Scholar
  50. 50.
    H. Schreier, J.-J. Orteu, and M.A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements (New York: Springer, 2009).CrossRefGoogle Scholar
  51. 51.
    R. Alturk, W.E. Luecke, S. Mates, A. Araujo, K. Raghavan, and F. Abu-Farha, Procedia Eng. 207, 2006 (2017).CrossRefGoogle Scholar
  52. 52.
    J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Metall. Mater. Trans. A 36, 421 (2005).CrossRefGoogle Scholar
  53. 53.
    J.A. Lichtenfeld, C.J. Van Tyne, and M.C. Mataya, Metall. Mater. Trans. A 37, 147 (2006).CrossRefGoogle Scholar
  54. 54.
    M. Isakov, S. Hiermaier, and V.-T. Kuokkala, Metall. Mater. Trans. A 46, 2352 (2015).CrossRefGoogle Scholar
  55. 55.
    T.-H. Lee, H.-Y. Ha, J.-Y. Kang, J. Moon, C.-H. Lee, and S.-J. Park, Acta Mater. 61, 7399 (2013).CrossRefGoogle Scholar
  56. 56.
    M. Eskandari, A. Zarei-Hanzaki, M. Mohtadi-Bonab, Y. Onuki, R. Basu, A. Asghari, et al., Mater. Sci. Eng. 674, 514 (2016).CrossRefGoogle Scholar
  57. 57.
    D. Goodchild, W. Roberts, and D. Wilson, Acta Metall. 18, 1137 (1970).CrossRefGoogle Scholar
  58. 58.
    P. Zavattieri, V. Savic, L. Hector, J. Fekete, W. Tong, and Y. Xuan, Int. J. Plast. 25, 2298 (2009).CrossRefGoogle Scholar
  59. 59.
    J. Min, L.G. Hector, L. Zhang, J. Lin, J.E. Carsley, and L. Sun, Mater. Sci. Eng. 673, 423 (2016).CrossRefGoogle Scholar
  60. 60.
    W. Lankford, Trans. ASM 42, 1197 (1950).Google Scholar
  61. 61.
    W.F. Hosford, Int. J. Mech. Sci. 27, 423 (1985).CrossRefGoogle Scholar
  62. 62.
    G. Huang, B. Yan, and Z. Xia, SAE Int. J. Mater. Mech. Manuf. 4, 385 (2011).CrossRefGoogle Scholar
  63. 63.
    D. Daniel, J.J. Jonas, and J. Bussiére, Texture Stress Microstruct. 19, 175 (1992).CrossRefGoogle Scholar
  64. 64.
    R. Arthey and W. Hutchinson, Metall. Mater. Trans. A 12, 1817 (1981).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Clemson University – International Center for Automotive Research (CU-ICAR)GreenvilleUSA
  2. 2.General Motors Global Research and DevelopmentWarrenUSA
  3. 3.GM Product Integrity, Body Structures and Closures Materials EngineeringWarrenUSA

Personalised recommendations