JOM

pp 1–5 | Cite as

Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

  • Jincheng Sun
  • Xiaodong Zou
  • Hiroyuki Matsuura
  • Cong Wang
Green Steelmaking Technologies
  • 48 Downloads

Abstract

The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion–microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

Notes

Acknowledgements

Support from the National Natural Science Foundation of China (51622401 and 51628402), National Key Research and Development Program of China (2016YFB0300602), and Global Talents Recruitment Program endowed by the Chinese Government is gratefully acknowledged. Thanks are also due to the Research Fund for Central Universities (N150205001), Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences (2015KF04), and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (AWJ-16-Z04).

References

  1. 1.
    UNCTAD: Review of Maritime Transport 2017, pp. 16–20.Google Scholar
  2. 2.
    T. Kimura, H. Sumi, and Y. Kitani, JFE Tech. Rep. 5, 45 (2005).Google Scholar
  3. 3.
    J.I. Takamura and S. Mizoguchi, in IISC. The Sixth International Iron and Steel Congress, vol. 1, p. 591 (1990).Google Scholar
  4. 4.
    S. Ogibayashi, Nippon Steel Tech. Rep. 61, 70 (1994).Google Scholar
  5. 5.
    J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Acta Mater. 51, 1593 (2003).CrossRefGoogle Scholar
  6. 6.
    R.A. Ricks, P.R. Howell, and G.S. Barritte, J. Mater. Sci. 17, 732 (1982).CrossRefGoogle Scholar
  7. 7.
    K.P. Chinda and J.M. Day, Metall. Mater. Trans. A 17, 1611 (1986).CrossRefGoogle Scholar
  8. 8.
    S.S. Babu and H.K.D.H. Bhadeshia, Mater. Trans. 32, 679 (2007).CrossRefGoogle Scholar
  9. 9.
    L. Taekyu, H.J. Kim, B.Y. Kang, and S.K. Hwang, Trans. Iron Steel Inst. Jpn. 40, 1260 (2007).Google Scholar
  10. 10.
    D.S. Sarma, A.V. Karasev, and P.G. Jonsson, Trans. Iron Steel Inst. Jpn. 49, 1063 (2009).CrossRefGoogle Scholar
  11. 11.
    A.R. Mills, G. Thewlis, and J.A. Whiteman, Met. Sci. J. 3, 1051 (2013).Google Scholar
  12. 12.
    Y. Min, X. Li, Z. Yu, C. Liu, and M. Jiang, Steel Res. Int. 87, 1503 (2016).CrossRefGoogle Scholar
  13. 13.
    D.V. Edmonds and R.C. Cochrane, Metall. Mater. Trans. A 21, 1527 (1990).CrossRefGoogle Scholar
  14. 14.
    Z.T. Ma and D. Janke, Acta Metall. Sin. 22, 79 (1998).Google Scholar
  15. 15.
    K. Zhu, J. Yang, R. Wang, and Z. Yang, J. Iron. Steel Res. Int. 18, 60 (2011).CrossRefGoogle Scholar
  16. 16.
    L.Y. Xu, J. Yang, R.Z. Wang, Y.-N. Wang, and W.L. Wang, Metall. Mater. Trans. A 47, 3354 (2016).CrossRefGoogle Scholar
  17. 17.
    D. Zhang, H. Terasaki, and Y.-I. Komizo, Acta Mater. 58, 1369 (2010).CrossRefGoogle Scholar
  18. 18.
    G. Mao, R. Cao, X. Guo, Y. Jiang, and J. Chen, Metall. Mater. Trans. A 48, 5783 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. Tanimoto, H. Terasaki, and Y.I. Komizo, Q. J. Jpn. Weld. Soc. 27, 122s (2009).CrossRefGoogle Scholar
  20. 20.
    Q.Y. Wang, X.D. Zou, H. Matsuura, and C. Wang, JOM (2017).  https://doi.org/10.1007/s11837-017-2700-4.Google Scholar
  21. 21.
    Q.Y. Wang, X.D. Zou, H. Matsuura, and C. Wang, Metall. Mater. Trans. B (2017).  https://doi.org/10.1007/s11663-017-1133-3.Google Scholar
  22. 22.
    X.D. Zou, D.P. Zhao, J.C. Sun, H. Matsuura, and C. Wang, Metall. Mater. Trans. B (2017).  https://doi.org/10.1007/s11663-017-1163-x.Google Scholar
  23. 23.
    H.S. Kim, H.G. Lee, and K.S. Oh, Metall. Mater. Trans. A 32, 1519 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Kimura, K. Nakajima, S. Mizoguchi, and H. Hasegawa, Metall. Mater. Trans. A 33, 427 (2002).CrossRefGoogle Scholar
  25. 25.
    J. Kunze, B. Beyer, S. Oswald, and W. Gruner, Steel Res. Int. 66, 161 (1995).CrossRefGoogle Scholar
  26. 26.
    Z. Chen, M.H. Loretto, and R.C. Cochrane, Mater. Sci. Technol. 3, 836 (1987).CrossRefGoogle Scholar
  27. 27.
    R. Farrar and P. Harrison, J. Mater. Sci. 22, 3812 (1987).CrossRefGoogle Scholar
  28. 28.
    Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, ISIJ Int. 34, 829 (1994).CrossRefGoogle Scholar
  29. 29.
    J.H. Shim, Y.-J. Oh, J.Y. Suh, Y. Cho, J.D. Shim, J.S. Byun, and D. Lee, Acta Mater. 49, 2115 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Department of Materials EngineeringThe University of TokyoTokyoJapan

Personalised recommendations