JOM

pp 1–8 | Cite as

Graphene-Reinforced Metal and Polymer Matrix Composites

  • Ashish K. Kasar
  • Guoping Xiong
  • Pradeep L. Menezes
Metal and Polymer Matrix Composites
  • 60 Downloads

Abstract

Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

References

  1. 1.
    Y. Xu, D.D.L. Chung, and C. Mroz, Compos. A 32, 1749 (2001).CrossRefGoogle Scholar
  2. 2.
    J.G. Park, D.H. Keum, and Y.H. Lee, Carbon 95, 690 (2015).CrossRefGoogle Scholar
  3. 3.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 358 (2008).Google Scholar
  4. 4.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
  5. 5.
    A.A. Balandin, Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
  6. 6.
    D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, and A.V. Sumant, Adv. Funct. Mater. 24, 6640 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Alwarappan, A. Erdem, C. Liu, and C.-Z. Li, J. Phys. Chem. C 113, 8853 (2009).CrossRefGoogle Scholar
  8. 8.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).CrossRefGoogle Scholar
  9. 9.
    J.A. King, D.R. Klimek, I. Miskioglu, and G.M. Odegard, J. Appl. Polym. Sci. 128, 4217 (2013).CrossRefGoogle Scholar
  10. 10.
    X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).CrossRefGoogle Scholar
  11. 11.
    G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, and T. Lee, Nanotechnology 23, 112001 (2012).CrossRefGoogle Scholar
  12. 12.
    T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, and J.H. Lee, Biosens. Bioelectron. 26, 4637 (2011).CrossRefGoogle Scholar
  13. 13.
    A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Compos. B 77, 402 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Lin, C. Richard Liu, and G.J. Cheng, Acta Mater. 80, 183 (2014).CrossRefGoogle Scholar
  15. 15.
    Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, and J. Xu, Compos. B 93, 352 (2016).CrossRefGoogle Scholar
  16. 16.
    Z. Hu, F. Chen, J. Xu, Z. Ma, H. Guo, C. Chen, Q. Nian, X. Wang, and M. Zhang, Compos. B 134, 133 (2018).CrossRefGoogle Scholar
  17. 17.
    L. Gao, W. Yue, S. Tao, and L. Fan, Langmuir 29, 957 (2013).CrossRefGoogle Scholar
  18. 18.
    Z. Ren, N. Meng, K. Shehzad, Y. Xu, S. Qu, B. Yu, and J.K. Luo, Nanotechnology 26, 065706 (2015).CrossRefGoogle Scholar
  19. 19.
    S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Mater. Sci. Eng., A 528, 7933 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, and A. Olszyna, Compos. B 111, 1 (2017).CrossRefGoogle Scholar
  21. 21.
    R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, J. Alloys Compd. 615, S578 (2014).CrossRefGoogle Scholar
  22. 22.
    J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Mater. Sci. Eng., A 626, 400 (2015).CrossRefGoogle Scholar
  23. 23.
    T.S. Koltsova, L.I. Nasibulina, I.V. Anoshkin, V.V. Mishin, E.I. Kauppinen, O.V. Tolochko, and A.G. Nasibulin, J. Mater. Sci. Eng. B2, 240 (2012).Google Scholar
  24. 24.
    Z. Hu, G. Tong, D. Lin, Q. Nian, J. Shao, Y. Hu, M. Saeib, S. Jin, and G.J. Cheng, J. Mater. Process. Technol. 231, 143 (2016).CrossRefGoogle Scholar
  25. 25.
    D. Kuang, L. Xu, L. Liu, W. Hu, and Y. Wu, Appl. Surf. Sci. 273, 484 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Eng. Sci. Technol. 19, 463 (2016).Google Scholar
  27. 27.
    S. Rengifo, C. Zhang, S. Harimkar, B. Boesl, and A. Agarwal, Technologies 5, 4 (2017).CrossRefGoogle Scholar
  28. 28.
    Z. Xu, X. Shi, W. Zhai, J. Yao, S. Song, and Q. Zhang, Carbon 67, 168 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Scr. Mater. 66, 594 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Compos. B 60, 111 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Ghazaly, B. Seif, and H.G. Salem, Light Metals 2013, 411 (2013).Google Scholar
  32. 32.
    J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon, Adv. Mater. 25, 6724 (2013).CrossRefGoogle Scholar
  33. 33.
    W.J. Kim, T.J. Lee, and S.H. Han, Carbon 69, 55 (2014).CrossRefGoogle Scholar
  34. 34.
    M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, and J. Mao, J. Magnes. Alloys 1, 242 (2013).CrossRefGoogle Scholar
  35. 35.
    M. Rashad, F. Pan, M. Asif, and A. Tang, Ind. Eng. Chem. 20, 4250 (2014).CrossRefGoogle Scholar
  36. 36.
    D. Parobek and H. Liu, 2D Mater. 2, 032001 (2015).CrossRefGoogle Scholar
  37. 37.
    N.W. Khun, H. Zhang, L.H. Lim, and J. Yang, KMUTNB Int. J. Appl. Sci. Technol. 8, 101 (2015).Google Scholar
  38. 38.
    Z. Tang, Y. Lei, B. Guo, L. Zhang, and D. Jia, Polymer 53, 673 (2012).CrossRefGoogle Scholar
  39. 39.
    H. Liu, Y. Li, T. Wang, and Q. Wang, J. Mater. Sci. 47, 1867 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Li, Q. Wang, T. Wang, and G. Pan, J. Mater. Sci. 47, 730 (2012).CrossRefGoogle Scholar
  41. 41.
    Z. Tai, Y. Chen, Y. An, X. Yan, and Q. Xue, Tribol. Lett. 46, 55 (2012).CrossRefGoogle Scholar
  42. 42.
    M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, J. Mater. Chem. 19, 7098 (2009).CrossRefGoogle Scholar
  43. 43.
    T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater Sci. 57, 1061 (2012).CrossRefGoogle Scholar
  44. 44.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
  45. 45.
    S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).CrossRefGoogle Scholar
  46. 46.
    M.J. Park, J.K. Lee, B.S. Lee, Y.-W. Lee, I.S. Choi, and S.-G. Lee, Chem. Mater. 18, 1546 (2006).CrossRefGoogle Scholar
  47. 47.
    N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, and H. Dai, J. Am. Chem. Soc. 129, 2448 (2007).CrossRefGoogle Scholar
  48. 48.
    Y.-L. Zhao and J.F. Stoddart, Acc. Chem. Res. 42, 1161 (2009).CrossRefGoogle Scholar
  49. 49.
    H. Bai, Y. Xu, L. Zhao, C. Li, and G. Shi, Chem. Commun. 13, 1667 (2009).CrossRefGoogle Scholar
  50. 50.
    Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008).CrossRefGoogle Scholar
  51. 51.
    E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, and S.O. Kim, J. Mater. Chem. 20, 1907 (2010).CrossRefGoogle Scholar
  52. 52.
    T. Kuila, P. Khanra, S. Bose, N.H. Kim, B.-C. Ku, B. Moon, and J.H. Lee, Nanotechnology 22, 305710 (2011).CrossRefGoogle Scholar
  53. 53.
    Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).CrossRefGoogle Scholar
  54. 54.
    M. Cano, U. Khan, T. Sainsbury, A. O’Neill, Z. Wang, I.T. McGovern, W.K. Maser, A.M. Benito, and J.N. Coleman, Carbon 52, 363 (2013).CrossRefGoogle Scholar
  55. 55.
    J. Du and H.M. Cheng, Macromol. Chem. Phys. 213, 1060 (2012).CrossRefGoogle Scholar
  56. 56.
    J.W. Suk, R.D. Piner, J. An, and R.S. Ruoff, ACS Nano 4, 6557 (2010).CrossRefGoogle Scholar
  57. 57.
    X. Zhao, Q. Zhang, D. Chen, and P. Lu, Macromolecules 43, 2357 (2010).CrossRefGoogle Scholar
  58. 58.
    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano 3, 3884 (2009).CrossRefGoogle Scholar
  59. 59.
    M. Martin-Gallego, M. Bernal, M. Hernandez, R. Verdejo, and M. Lopez-Manchado, Eur. Polym. J. 49, 1347 (2013).CrossRefGoogle Scholar
  60. 60.
    L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao, Y.-B. Li, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, Carbon 60, 16 (2013).CrossRefGoogle Scholar
  61. 61.
    H. Wang, G. Xie, M. Fang, Z. Ying, Y. Tong, and Y. Zeng, Compos. B 113, 278 (2017).CrossRefGoogle Scholar
  62. 62.
    S. Jiang, Y. Zeng, W. Zhou, X. Miao, and Y. Yu, Sci. Rep. 6, 19313 (2016).CrossRefGoogle Scholar
  63. 63.
    Z. Zeng, Y. Yu, Y. Song, N. Tang, L. Ye, and J. Zang, ACS Appl. Mater. Interfaces 9, 41078 (2017).CrossRefGoogle Scholar
  64. 64.
    W. Li, Q. Yu, and Y. Yu, Transl. Mater. Res. 4, 035001 (2017).CrossRefGoogle Scholar
  65. 65.
    Y. Yu, S. Jiang, W. Zhou, X. Miao, Y. Zeng, G. Zhang, and S. Liu, Sci. Rep. 3, 2697 (2013).CrossRefGoogle Scholar
  66. 66.
    Y. Guan and H. Li, J. Mater. Sci. Mater. Electron. 27, 11917 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ashish K. Kasar
    • 1
  • Guoping Xiong
    • 1
  • Pradeep L. Menezes
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Nevada RenoRenoUSA

Personalised recommendations