Advertisement

JOM

, Volume 70, Issue 6, pp 988–992 | Cite as

Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

  • Sang Jun Kim
  • Jinwoo Kim
  • Eun Soo Park
Technical Communication
  • 158 Downloads

Abstract

We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

Notes

Ackowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science, ICT and Future Planning) (No. 2014K1A3A1A20034841). One of the authors (E.S. Park) also benefited from the Institute of Engineering Research at Seoul National University.

Supplementary material

11837_2018_2822_MOESM1_ESM.pdf (901 kb)
Supplementary material 1 (PDF 900 kb)

References

  1. 1.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  2. 2.
    D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, and J. Eckert, Prog. Mater Sci. 58, 1103 (2013).CrossRefGoogle Scholar
  3. 3.
    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz, Scripta Mater. 53, 271 (2005).CrossRefGoogle Scholar
  4. 4.
    B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan, and S. Bhattacharyya, Phys. Rev. Lett. 96, 245503 (2006).CrossRefGoogle Scholar
  5. 5.
    H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong, and D.H. Kim, Acta Mater. 58, 2483 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Gebert, A.A. Kündig, L. Schultz, and K. Hono, Scr. Mater. 51, 961 (2004).CrossRefGoogle Scholar
  7. 7.
    J. Jayaraj, B.J. Park, D.H. Kim, W.T. Kim, and E. Fleury, Scr. Mater. 55, 1063 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
  9. 9.
    E.S. Park, J.S. Kyeong, and D.H. Kim, Scr. Mater. 57, 49 (2007).CrossRefGoogle Scholar
  10. 10.
    Q. Luo, D.Q. Zhao, M.X. Pan, and W.H. Wang, Appl. Phys. Lett. 89, 081914 (2006).CrossRefGoogle Scholar
  11. 11.
    L. Liang, X. Hui, Y. Wu, and G.L. Chen, J. Alloys Compd. 457, 541 (2008).CrossRefGoogle Scholar
  12. 12.
    H. Fu, X.Y. Zhang, H.J. Yu, B.H. Teng, and X.T. Zu, Solid State Commun. 145, 15 (2008).CrossRefGoogle Scholar
  13. 13.
    K.-W. Kim et al., Biodesign 5, 24 (2017).Google Scholar
  14. 14.
    L.G. Zhang, H.Q. Dong, G.X. Huang, J. Shan, L.B. Liu, and Z.P. Jin, Calphad 33, 664 (2009).CrossRefGoogle Scholar
  15. 15.
    K. Yamaguchi, Y.C. Song, T. Yoshida, and K. Itagaki, J. Alloys Compd. 452, 73 (2008).CrossRefGoogle Scholar
  16. 16.
    V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex, J. Alloys Compd. 385, 133 (2004).Google Scholar
  17. 17.
    T. Wang, Z. Jin, and J.C. Zhao, J. Phase Equilib. 22, 544 (2001).CrossRefGoogle Scholar
  18. 18.
    H. Bo, L.B. Liu, J.L. Hu, X.D. Zhang, and Z.P. Jin, Thermochim. Acta 591, 51 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Zinkevich, N. Mattern, and H.J. Seifer, J. Phase Equilib. 22, 43 (2001).CrossRefGoogle Scholar
  20. 20.
    C.H.P. Lupis, Chemical thermodynamics of materials, 1st ed. (North-Holland: Elsevier Science Ltd, 1983), pp. 304–305.Google Scholar
  21. 21.
    G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
  22. 22.
    J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).CrossRefGoogle Scholar
  23. 23.
    G. Beaucage, H.K. Kammler, and S.E. Pratsinis, J. Appl. Crystallogr. 37, 523 (2004).CrossRefGoogle Scholar
  24. 24.
    F. Yuan, J. Du, and B. Shen, Appl. Phys. Lett. 101, 032405 (2012).CrossRefGoogle Scholar
  25. 25.
    J.H. Han, N. Mattern, B. Schwarz, S. Gorantla, T. Gemming, and J. Eckert, Intermetallics 20, 115 (2012).CrossRefGoogle Scholar
  26. 26.
    R.C. O’Handley, Modern magnetic materials: principles and applications, 1st ed. (New York: Wiley, 1999), pp. 403–405.Google Scholar
  27. 27.
    T. Bitoh, A. Makino, and A. Inoue, J. Appl. Phys. 99, 08F102 (2006).CrossRefGoogle Scholar
  28. 28.
    Y.A. Koksharov, S.P, ed. Magnetic Nanoparticles (Gubin (Weinheim): Wiley, 2009), p. 197.Google Scholar
  29. 29.
    C. Luna, M. del Puerto Morales, C.J. Serna, and M. Vázquez, Nanotechnology 14, 268 (2003).CrossRefGoogle Scholar
  30. 30.
    C.L. Zhang, D.H. Wang, Z.D. Han, H.C. Xuan, B.X. Gu, and Y.W. Du, J. Appl. Phys. 105, 013912 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Research Institute of Advanced Materials, Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations