Advertisement

JOM

, Volume 70, Issue 5, pp 747–752 | Cite as

The Secant Rate of Corrosion: Correlating Observations of the USS Arizona Submerged in Pearl Harbor

  • Donald L. Johnson
  • Robert J. DeAngelis
  • Dana J. Medlin
  • Jon E. Johnson
  • James D. Carr
  • David L. Conlin
Technical Communication

Abstract

Contrary to previous linear projections of steel corrosion in seawater, analysis of an inert marker embedded in USS Arizona concretion since the 7 December 1941 attack on Pearl Harbor reveals evidence that the effective corrosion rate decreases with time. The secant rate of corrosion, or SRC correlation, derived from this discovery could have a significant impact on failure analysis investigations for concreted shipwrecks or underwater structures. The correlation yields a lower rate of metal thinning than predicted. Development of the correlation is described.

Notes

Acknowledgement

The Submerged Resources Center, National Park Service, has provided the funds necessary to conduct this study. The authors thank Dr. Tim Foecke, NIST, and Col. Tim Christenson, DOD, for early review of the manuscript.

References

  1. 1.
    T. Foecke, L. Ma, M.A. Russell, D.L. Conlin, and L.E. Murphy, J. Archaeol. Sci. 37, 1090 (2010).CrossRefGoogle Scholar
  2. 2.
    D. Murphy, Private Communication (Sea Bird Electronics, Bellevue, WA 2003)Google Scholar
  3. 3.
    R.J. DeAngelis, in Structure and Chemical Characterization of Concretion from USS Arizona, Reports 1 and 2 (National park Service Reference H24, (IMRO-SRC) 2012)Google Scholar
  4. 4.
    D.L. Johnson, R.J. DeAngelis, D.J. Medlin, J.D. Carr, and D.L. Conlin, JOM 66, 817 (2014).CrossRefGoogle Scholar
  5. 5.
    L.S. Darken and R.W. Gurry, Physical Chemistry of Metals (New York: McGraw-Hill Book Co, 1953), p. 454.Google Scholar
  6. 6.
    N.A. North, IJNA 5, 253 (1976).CrossRefGoogle Scholar
  7. 7.
    D.L. Johnson, B.M. Wilson, J.D. Carr, M.A. Russell, L.E. Murphy, D.L. Conlin, Materials Performance, 54, (2006)Google Scholar
  8. 8.
    M.A. Russell, D.L. Conlin, L.E. Murphy, D.L. Johnson, B.M. Wilson, and J.D. Carr, IJNA 35, 310 (2006).CrossRefGoogle Scholar
  9. 9.
    J.E. Johnson, Private Communication (Edina: Dow Water and Process Solutions, 2015).Google Scholar
  10. 10.
    R.E. Melchers, Corrosion 61, 895 (2005).CrossRefGoogle Scholar
  11. 11.
    N.A. North and I.D. MacLeod, Corrosion of Metals, Chapter 4, Conservation of Marine Archaeological Objects (Paddington: Butterworth & Co, 1987).Google Scholar
  12. 12.
    J.D. Makinson, D.L. Johnson, M.A. Russell, D.L. Conlin, and L.E. Murphy, Mater. Perform 41, 56 (2002).Google Scholar
  13. 13.
    R Sanders, Private Communication United States Coast Guard Academy (2017)Google Scholar
  14. 14.
    B.M. Wilson, D.L. Johnson, H. VanTilburg, M.A. Russell, L.E. Murphy, J.D. Carr, R.D. DeAngelis, and D.L. Conlin, JOM 59, 14 (2007).CrossRefGoogle Scholar
  15. 15.
    D.L. Johnson, D.J. Medlin, L.E. Murphy, J.D. Carr, and D.L. Conlin, Corrosion 67, 125005-1 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Donald L. Johnson
    • 1
  • Robert J. DeAngelis
    • 2
  • Dana J. Medlin
    • 3
  • Jon E. Johnson
    • 4
  • James D. Carr
    • 5
  • David L. Conlin
    • 6
  1. 1.Submerged Resources CenterNational Park ServiceSun City WestUSA
  2. 2.NicevilleUSA
  3. 3.EAG LaboratoriesEl SegundoUSA
  4. 4.Dow Water and Process SolutionsEdinaUSA
  5. 5.Department of ChemistryUniversity of Nebraska-LincolnLincolnUSA
  6. 6.Submerged Resources CenterNational Park ServiceDenverUSA

Personalised recommendations