Skip to main content
Log in

Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

  • Functional Materials for Printed, Flexible and Wearable Electronics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS’ great promise as a competitive new method for digital production of printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Gagliardi, Global Markets for Roll-to-Roll Technologies for Flexible Devices (Wellesley, MA: BCC Research, 2016).

    Google Scholar 

  2. Ceradrop, X-Serie, Product Specifications (Ceradrop). http://www.ceradrop.com/content/uploads/2016/04/CeraPrinter_X-Serie.pdf. Accessed 27 Nov 2017.

  3. M. Hösel, R. Søndergaard, D. Angmo, and F. Krebs, Adv. Eng. Mater. 15, 995 (2013).

    Article  Google Scholar 

  4. Y. Huang and N. Bu, Chin. Sci. Bull. 55, 3383 (2010).

    Article  Google Scholar 

  5. K.C. Yung, X. Gu, C.P. Lee, and H.S. Choy, J. Mater. Process. Technol. 210, 2268–2272 (2010).

    Article  Google Scholar 

  6. E. Sowade, H. Kang, and K. Mitra, J. Mater. Chem. C. 3, 11815 (2015).

    Article  Google Scholar 

  7. M. Guillot, S. McCool, and K. Schroder, Proc. ASME Int. Mech. Eng. Congr. Expo. 7, 19 (2012).

    Google Scholar 

  8. K. Schroder, Nanotechnol. Conf. Expo 2, 220 (2011).

    Google Scholar 

  9. N. Holt, A. Van Horn, M. Montazeri, and W. Zhou, J. Manuf. Process. 31, 536 (2018).

    Article  Google Scholar 

  10. N. Holt, L. Marques, A. Van Horn, M. Montazeri, and W. Zhou, Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-017-1316-8.

    Google Scholar 

  11. OptoSigma, Sub-micron worm drive micrometer heads (OptoSigma). https://www.global-optosigma.com/en_us/Catalogs/pno/?from=page&pnoname=WGP&ccode=W8005&dcode=. Accessed 27 Nov 2017.

  12. Newport, AJS100-20-127-S (Newport). https://www.newport.com/medias/sys_master/images/images/hd7/h43/8933920505886/AJS100-20-127-S.pdf. Accessed 27 Nov2017.

  13. Automation Technology Inc., NEMA17 stepper motor (KL17H248-25-4A) for 3D printer, 67oz-in (Automation Technology). https://www.automationtechnologiesinc.com/products-page/featured-cnc-products/kl17h248-25-4a/. Accessed 27 Nov 2017.

  14. J. Howard, O. Lieder, B. Bowlds, and P. Lindsay, US 7256588 B2 (Patent Grant, 2007). https://www.google.com/patents/US7256588. Accessed 27 Nov 2017.

  15. A. Fleming, Sens. Actuators A 190, 106 (2012).

    Article  Google Scholar 

  16. Y. Ganjeh, B. Song, K. Pagadala, K. Kim, S. Sadat, W. Jeong, K. Kurabayashi, E. Meyhofer, and P. Reddy, Rev. Sci. Instrum. 83, 105101 (2012).

    Article  Google Scholar 

  17. B. Choi, M. Colburn, S. Sreenivasan, C. Willson, T. Bailey, and J. Ekerdt, US 6954275 B2 (Patent Grant, 2005). https://patents.google.com/patent/US6954275B2/en. Accessed 27 Nov 2017.

  18. Schott Advanced Optics, Glass wafer specification (Schott Advanced Optics, 2016). http://www.us.schott.com/d/advanced_optics/ae285905-f939-4e0b-9b00-181feb764086/1.2/schott-glass-wafers-english-us-10082017.pdf. Accessed 27 Nov 2017.

  19. DuPont Teijin Films, Melinex® ST506 Datasheet (DuPont Teijin Films). http://usa.dupontteijinfilms.com/wp-content/uploads/2017/01/ST506-Datasheet.pdf. Accessed 27 Nov 2017.

  20. NovaCentrix, PSI-211® conductive screen ink datasheet (NovaCentrix, 2012). https://www.novacentrix.com/sites/default/files/pdf/PSI-211%20Data%20Sheet.pdf. Accessed 27 Nov 2017.

  21. Affiliated Manufacturers Inc., MSP-485 precision screen printer brochure (AMI-Presco). http://www.ami-presco.com/downloads/485brochure.pdf. Accessed 27 Nov 2017.

  22. P. Peng, A. Hu, and Y. Zhou, Appl. Phys. A 108, 685 (2012).

    Article  Google Scholar 

  23. J. Kang, J. Ryu, H. Kim, and H. Hahn, J. Electron. Mater. 40, 2268 (2011).

    Article  Google Scholar 

  24. Novacentrix, Metalon® JS-A101A and JS-A102A (NovaCentrix, 2017). https://www.novacentrix.com/sites/default/files/pdf/Metalon%20JS-A101A%20JS-A102A%20rev0.pdf. Accessed 27 Nov 2017.

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Oak Ridge Associated Universities through the Ralph E. Powe Junior Faculty Enhancement Awards and from the University of Arkansas through the startup fund provided by the Vice Provost Office for Research and Economic Development. We thank Steven Brown for his assistance in building the experimental printer and Errol Porter and Clint Hardee for their assistance in developing the microheater array. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holt, N., Zhou, W. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer. JOM 70, 1785–1792 (2018). https://doi.org/10.1007/s11837-018-2796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2796-1

Navigation