, Volume 70, Issue 5, pp 638–643 | Cite as

Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation, Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties

  • J. Wang
  • H. P. Tang
  • K. Yang
  • N. Liu
  • L. Jia
  • M. Qian
Powder Metallurgy of Non-Ferrous Metals


Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.
Fig. 1

Illustration of (a) vertically (V-) and (b) horizontally (H-) built strips. (c) Long, thin (2 mm) and smooth tensile specimens



The project was supported by the National Natural Science Foundation of China (Grant No. 51528401). M. Qian further acknowledges support from the Australia Research Council (ARC) through DP150104719.


  1. 1.
    H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, and M. Qian, Mater. Sci. Eng. A 636, 103 (2015).CrossRefGoogle Scholar
  2. 2.
    C. Körner, Int. Mater. Rev. 61, 361 (2016).CrossRefGoogle Scholar
  3. 3.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, J. Mech. Behav. Biomed. 2, 20 (2009).CrossRefGoogle Scholar
  4. 4.
    P. Wang, X. Tan, M.L.S. Nai, S.B. Tor, and J. Wei, Mater. Des. 95, 287 (2016).CrossRefGoogle Scholar
  5. 5.
    X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, and L.E. Murr, Mater. Des. 95, 21 (2016).CrossRefGoogle Scholar
  6. 6.
    A.A. Antonysamy, J. Meyer, and P.B. Prangnell, Mater. Charact. 84, 153 (2013).CrossRefGoogle Scholar
  7. 7.
    S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. A 41, 3442 (2010).CrossRefGoogle Scholar
  8. 8.
    C. De Formanoir, S. Michotte, O. Rigo, L. Germain, and S. Godet, Mater. Sci. Eng. A 652, 105 (2016).CrossRefGoogle Scholar
  9. 9.
    J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 26, 14.1 (2016).Google Scholar
  10. 10.
    S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. StJohn, and M. Qian, Metall. Mater. Trans. A 46, 3824 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.Y. Sun, S. Gulizia, D. Fraser, C.H. Oh, S.L. Lu, and M. Qian, JOM 69, 1836 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Qian, W. Xu, M. Brandt, and H.P. Tang, MRS Bull. 41, 775 (2016).CrossRefGoogle Scholar
  13. 13.
    X. Tan, Y. Kok, Y.J. Tan, G. Vastola, Q.X. Pei, G. Zhang, Y. Zhang, S.B. Tor, K.F. Leong, and C.K. Chua, J. Alloys Compd. 646, 303 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Cormier, H. West, O. Harrysson, and K. Knowlson, 15th Annual International Solid Freeform Fabrication (SFF) Symposium, Austin, TX, pp. 440–447, 2–4 Aug 2004.Google Scholar
  15. 15.
    J.K. Algardh, T. Horn, H. West, R. Aman, A. Snis, H. Engqvist, J. Lausmma, and O. Harrysson, Addit. Manuf. 12, 45 (2016).CrossRefGoogle Scholar
  16. 16.
    H.P. Tang, J. Wang, C.N. Song, N. Liu, L. Jia, J. Elambasseril, and M. Qian, JOM 69, 466 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Nonferrous Metal ResearchXi’anChina
  2. 2.Centre for Additive Manufacturing, School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations