, Volume 70, Issue 5, pp 700–705 | Cite as

In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

  • Zheng-zhi Zhao
  • Rong-hua Cao
  • Ju-hua Liang
  • Feng Li
  • Cheng Li
  • Shu-feng Yang
Characterization of Advanced High Strength Steels for Automobiles


The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.



Zhengzhi Zhao acknowledges the financial support from the National Natural Science Foundation of China (No. 51574028).


  1. 1.
    Z.H. Cai, H. Ding, R.D.K. Misr, and Z.Y. Ying, Acta Mater. 84, 229 (2015).CrossRefGoogle Scholar
  2. 2.
    C.-Y. Lee, J. Jeong, J. Han, S.-J. Lee, S. Lee, and Y.-K. Lee, Acta Mater. 84, 1 (2014).CrossRefGoogle Scholar
  3. 3.
    C.W. Shao, W.J. Hui, Y.J. Zhang, X.L. Zhao, and Y.Q. Weng, Mater. Sci. Eng. A 682, 45 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Lee and B.C. De Cooman, Metall. Mater. Trans. A 44, 5018 (2013).CrossRefGoogle Scholar
  5. 5.
    D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim, Scr. Mater. 57, 1097 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, and D. Bhattacharjee, Mater. Sci. Eng. A 528, 2394 (2011).CrossRefGoogle Scholar
  7. 7.
    H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 26, 817 (2010).CrossRefGoogle Scholar
  8. 8.
    C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee, and N.J. Kim, Scr. Mater. 66, 519 (2012).CrossRefGoogle Scholar
  9. 9.
    S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, and H.N. Han, Scr. Mater. 68, 365 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Lee, S. Shin, M. Kwon, K. Lee, and B.C. De Cooman, Metall. Mater. Trans. A 48, 1678 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Liang, Z. Zhao, D. Tang, N. Ye, S. Yang, and W. Liu, Mater. Sci. Eng. A 711, 175 (2018).CrossRefGoogle Scholar
  12. 12.
    B. Sun, F. Fazeli, C. Scott, X. Yan, Z. Liu, X. Qin, and S. Yue, Scr. Mater. 130, 49 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Kadkhodapour, A. Butz, and S. Ziaei Rad, Acta Mater. 59, 2575 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Choi, S. Lee, F. Barlat, and B.C. De Cooman, Mater. Sci. Eng. A 687, 200 (2017).CrossRefGoogle Scholar
  15. 15.
    G. Avramovic-Cingara, ChAR Saleh, M.K. Jain, and D.S. Wilkinson, Mater. Trans. A 40, 3117 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Šmida and J. Bošanský, Mater. Sci. Eng. A 287, 107 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Zheng-zhi Zhao
    • 1
  • Rong-hua Cao
    • 1
  • Ju-hua Liang
    • 1
  • Feng Li
    • 1
  • Cheng Li
    • 1
  • Shu-feng Yang
    • 2
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations