, Volume 70, Issue 5, pp 758–763 | Cite as

Preparation of Al-Ti Master Alloy by Electrochemical Recovery of Titanium-Reducing Slag in Molten Salts

  • Kun Zhao
  • Yaowu Wang
  • Naixiang Feng
Technical Communication


An electrochemical method for the preparation of an Al-Ti master alloy in Al electrolysis melts of Na3AlF6-Al2O3-LiF at 980°C was investigated. The Ti-reducing slag (5.24 wt.% Ti in the Ti-reducing slag) was obtained from the aluminothermic reduction of Na2TiF6. The cold test (i.e., the aluminothermic reduction process without applying any voltages) result revealed the capability of the Al cathode to reduce the Ti slag, and the recovery rate could reach 45.8% at 980°C over 3.5 h with the addition of 10 wt.% Ti-reducing slag. In contrast, the recovery rate of Ti after electrolysis at 3.0 V could reach 99.2%. Thus, the electrochemical treatment for Ti-reducing slag is a cooperative process involving aluminothermic and electrochemical reduction reactions. Electrochemical analysis indicated that the Ti ions are reduced to metallic Ti according to Ti4+ → Ti3+ → Ti. An Al-Ti alloy layer could be prepared on the external surface of the Mo electrode after electrolysis with the addition of 12 wt.% Ti-reducing slag.



This work was performed under the auspices of the National Natural Science Foundation of China (Grant No. 51304044).


  1. 1.
    K. Zhao, Y.W. Wang, and N.X. Feng, JOM 69, 1795 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Zhao, N.X. Feng, and Y.W. Wang, Intermetallics 85, 156 (2017).CrossRefGoogle Scholar
  3. 3.
    R.F. Descallar-Arriesgado, N. Kobayashi, T. Kikuchi, and R.O. Suzuki, Electrochim. Acta 56, 8422 (2011).CrossRefGoogle Scholar
  4. 4.
    K.S. Mohandas and D.J. Fray, Trans. Indian Inst. Met. 57, 579 (2004).Google Scholar
  5. 5.
    P.D. Ferro, B. Mishra, D.L. Olson, and W.A. Averill, Waste Manage. 17, 451 (1998).CrossRefGoogle Scholar
  6. 6.
    P. Souček, R. Malmbeck, E. Mendes, C. Nourry, and J.P. Glatz, J. Radioanal. Nucl. Chem. 286, 823 (2010).CrossRefGoogle Scholar
  7. 7.
    A.M. Liu, L.X. Li, J.L. Xu, Z.N. Shi, X.W. Hu, B.L. Gao, Z.W. Wang, J.Y. Yu, and G. Chen, JOM 66, 694 (2014).CrossRefGoogle Scholar
  8. 8.
    P. Taxil, Encyclopedia of Applied Electrochemistry (New York: Springer, 2014), pp. 1801–1806.CrossRefGoogle Scholar
  9. 9.
    H.H. Kellogg, J. Electrochem. Soc. 97, 133 (1950).CrossRefGoogle Scholar
  10. 10.
    H. Vogt and J. Thonstad, J. Appl. Electrochem. 32, 241 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Thonstad, T.A. Utigard, and H. Vogt, Essential Readings in Light Metals (New York: Springer, 2016), p. 131.CrossRefGoogle Scholar
  12. 12.
    A. Silny, M. Korenko, V. Daneck, and M. Chrenkova, Can. Metall. Q. 45, 275 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Thonstad, F. Nordmo, and J.K. Rødseth, Electrochim. Acta 19, 761 (1974).CrossRefGoogle Scholar
  14. 14.
    L.P. Polyakova, P. Taxil, and E.G. Polyakov, J. Alloys Compd. 359, 244 (2003).CrossRefGoogle Scholar
  15. 15.
    J.H. Christie, J.A. Turner, and R.A. Osteryoung, Anal. Chem. 49, 1899 (1977).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)Yangtze Normal UniversityChongqingChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations