, Volume 70, Issue 5, pp 726–732 | Cite as

Crystal Nucleation and Growth in Undercooled Melts of Pure Zr, Binary Zr-Based and Ternary Zr-Ni-Cu Glass-Forming Alloys

  • Dieter M. Herlach
  • Raphael Kobold
  • Stefan Klein
Liquid->Solid->Solid Phase Transformations: Characterization and Modeling


Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.



The authors are very grateful to Peter Galenko and Jan Gegner for intense discussions and calculations of the growth velocity as a function of undercooling of pure Zr. We thank the German Research Foundation DFG for financial support within the Contracts HE1601/26, HE1601/21 and HE1601/28.


  1. 1.
    W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).CrossRefGoogle Scholar
  2. 2.
    S.R. Coriell and D. Turnbull, Acta Metall. 30, 2135 (1982).CrossRefGoogle Scholar
  3. 3.
    W. Buckel and R. Hilsch, Z. Phys. 131, 420 (1952).CrossRefGoogle Scholar
  4. 4.
    W. Buckel and R. Hilsch, Z. Phys. 138, 109 (1954).CrossRefGoogle Scholar
  5. 5.
    R. Willnecker, D.M. Herlach, and B. Feuerbacher, Phys. Rev. Lett. 62, 2707 (1989).CrossRefGoogle Scholar
  6. 6.
    B. Wei, D.M. Herlach, B. Feuerbacher, and F. Sommer, Acta Metall. Mater. 41, 1801 (1993).CrossRefGoogle Scholar
  7. 7.
    M. Barth, B. Wei, and D.M. Herlach, Phys. Rev. B 51, 3422 (1995).CrossRefGoogle Scholar
  8. 8.
    M. Aziz, J. Appl. Phys. 53, 1158 (1982).CrossRefGoogle Scholar
  9. 9.
    D. Turnbull, Contemp. Phys 10, 473 (1969).CrossRefGoogle Scholar
  10. 10.
    A.J. Drehman and D. Turnbull, Scr. Metal. 15, 543 (1981).CrossRefGoogle Scholar
  11. 11.
    H.S. Chen and D. Turnbull, Acta Metall. 17, 1021 (1969).CrossRefGoogle Scholar
  12. 12.
    H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
  13. 13.
    H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 47, 796 (1985).CrossRefGoogle Scholar
  14. 14.
    F. Gillessen, D.M. Herlach, and B. Feuerbacher, Z. Phys. Chem. 156, 129 (1988).CrossRefGoogle Scholar
  15. 15.
    D.M. Herlach and F. Gillessen, J. Phys. F Met. Phys. 17, 1635 (1987).CrossRefGoogle Scholar
  16. 16.
    T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32, 1005 (1991).CrossRefGoogle Scholar
  17. 17.
    A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM 33, 937 (1992).CrossRefGoogle Scholar
  18. 18.
    A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
  19. 19.
    R. Busch, J. Schroers, and W.H. Wang, MRS Bull. 32, 620 (2007).CrossRefGoogle Scholar
  20. 20.
    N. Nishimyama and A. Inoue, Appl. Phys. Lett. 80, 568 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Gegner and D.M. Herlach (unpublished).Google Scholar
  22. 22.
    S. Klein, Ph.D. Thesis, Ruhr-University Bochum (2019).Google Scholar
  23. 23.
    R. Kobold, PhD Thesis, Ruhr-University Bochum (2016).Google Scholar
  24. 24.
    D.M. Herlach, Annu. Rev. Mater. Sci. 21, 23 (1991).CrossRefGoogle Scholar
  25. 25.
    D.M. Herlach, Metals 4, 196 (2014).CrossRefGoogle Scholar
  26. 26.
    D.M. Matson, A. Shokuhfar, J.W. Lum, and M.C. Flemings, Solidification science and processing, ed. I. Ohnaka and D.M. Stefanescu (TMS, Waarrendale: PA, 1996), pp. 19–26.Google Scholar
  27. 27.
    O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe, and D.M. Herlach, J. Cryst. Growth 297, 211 (2006).CrossRefGoogle Scholar
  28. 28.
    W. Hornfeck, R. Kobold, M. Kolbe, D.M. Herlach. arXiv:1410.2952vl [cond-mat.mtrl-sci].
  29. 29.
    J.W. Christian, The Theory of Transformations in Metals and Alloys (Oxford: Pergamon, 1975).Google Scholar
  30. 30.
    J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).CrossRefzbMATHGoogle Scholar
  31. 31.
    D. Turnbull, J. Appl. Phys. 21, 1022 (1950).CrossRefGoogle Scholar
  32. 32.
    F. Gillessen and D.M. Herlach, J. Non-Crystal. Solids 117/118, 555 (1990).CrossRefGoogle Scholar
  33. 33.
    I. Gallino, M.B. Shah, and R. Busch, Acta Mater. 55, 1367 (2007).CrossRefGoogle Scholar
  34. 34.
    F. Spaepen, Acta Metall. 23, 729 (1975).CrossRefGoogle Scholar
  35. 35.
    V.P. Skripov, Material Science, Crystal Growth and Materials (Amsterdam: North Holland, 1977).Google Scholar
  36. 36.
    P.K. Galenko and S. Sobolev, Phys. Rev. E 55, 343 (1997).CrossRefGoogle Scholar
  37. 37.
    P.K. Galenko and D.A. Danilov, Phys. Lett. A 235, 271 (1997).CrossRefGoogle Scholar
  38. 38.
    S. Klein, D. Holland-Moritz, and D.M. Herlach, Phys. Rev. B (BR) 80, 212202 (2009).CrossRefGoogle Scholar
  39. 39.
    D.W. Marr and A.P. Gast, J. Chem. Phys. 99, 2024 (1993).CrossRefGoogle Scholar
  40. 40.
    D.Y. Sun, M. Asta, and J.J. Hoyt, Phys. Rev. B 69, 024108 (2004).CrossRefGoogle Scholar
  41. 41.
    J. Gegner, O. Shuleshova, R. Kobold, D. Holland-Moritz, F. Yang, W. Hornfeck, J. Bednarcik, and D.M. Herlach, J. Alloys Compd. 576, 232 (2013).CrossRefGoogle Scholar
  42. 42.
    Z. Altounian, T. Guo-hua, and J.O. Strom-Olsen, J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
  43. 43.
    H. Wang, D.M. Herlach, and R. Liu, EPL 105, 36001 (2014).CrossRefGoogle Scholar
  44. 44.
    R. Kobold, W.W. Kuang, H. Wang, W. Hornfeck, M. Kolbe, and D.M. Herlach, Philos. Mag. Lett. 97, 249 (2017).CrossRefGoogle Scholar
  45. 45.
    K.H.J. Buschow, J. Phys. F 13, 563 (1983).CrossRefGoogle Scholar
  46. 46.
    J. Orava and A.L. Greer, J. Chem. Phys. 140, 214504 (2014).CrossRefGoogle Scholar
  47. 47.
    B.S. Murty, D.H. Ping, and K. Hono, Appl. Phys. Lett. 77, 1102 (2000).CrossRefGoogle Scholar
  48. 48.
    H. Peng, D.M. Herlach, and T. Voigtmann, Phys. Rev. Mater. 1, 030401(R) (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und RaumfahrtCologneGermany
  2. 2.Institut für Experimentalphysik IVRuhr-Universität BochumBochumGermany
  3. 3.Institut für Metallische WerkstoffeFriedrich Schiller-UniversitätJenaGermany
  4. 4.Deutsche Gesellschaft für MaterialkundeSt. AugustinGermany

Personalised recommendations