, Volume 70, Issue 5, pp 626–631 | Cite as

Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

  • J. Shen
  • B. Chen
  • J. Umeda
  • K. Kondoh
Powder Metallurgy of Non-Ferrous Metals


Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of ~ 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.



This work was partially supported by the Japan Science and Technology Agency (JST) under Industry–Academia Collaborative R&D Program “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials.”


  1. 1.
    D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).CrossRefGoogle Scholar
  2. 2.
    A.M. Khorasani, M. Goldberg, E.H. Doeven, and G. Littlefair, J. Biomater. Tissue Eng. 5, 593 (2015).CrossRefGoogle Scholar
  3. 3.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng. A 243, 244 (1998).CrossRefGoogle Scholar
  4. 4.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009).CrossRefGoogle Scholar
  5. 5.
    G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).Google Scholar
  6. 6.
    B. Sun, S. Li, H. Imai, T. Mimoto, J. Umeda, and K. Kondoh, Mater. Sci. Eng. A 563, 95 (2013).CrossRefGoogle Scholar
  7. 7.
    X.X. Ye, B. Chen, J.H. Shen, J. Umeda, and K. Kondoh, J. Alloys Compd. 709, 381 (2017).CrossRefGoogle Scholar
  8. 8.
    X.X. Ye, H. Imai, J.H. Shen, B. Chen, G.Q. Han, J. Umeda, M. Takahashi, and K. Kondoh, Mater. Sci. Eng. A 684, 165 (2017).CrossRefGoogle Scholar
  9. 9.
    K. Kondoh, B. Sun, S. Li, H. Imai, and J. Umeda, Int. J. Powder Metall. 50, 35 (2014).Google Scholar
  10. 10.
    T. Mimoto, J. Umeda, and K. Kondoh, Mater. Trans. 56, 1153 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Zheng, X. Yao, Y. Su, and D.L. Zhang, Mater. Sci. Eng. A 686, 11 (2017).CrossRefGoogle Scholar
  12. 12.
    B. Chen, J. Shen, X. Ye, J. Umeda, and K. Kondoh, J. Mater. Res. 32, 3769 (2017).CrossRefGoogle Scholar
  13. 13.
    S.C. Tjong and Z.Y. Ma, Mater. Sci. Eng. R Rep. 29, 49 (2000).CrossRefGoogle Scholar
  14. 14.
    D.J. Lloyd, Int. Mater. Rev. 39, 1 (1994).CrossRefGoogle Scholar
  15. 15.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci. 26, 1137 (1991).CrossRefGoogle Scholar
  16. 16.
    K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 103, 153 (2016).CrossRefGoogle Scholar
  17. 17.
    K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 62, 141 (2014).CrossRefGoogle Scholar
  18. 18.
    R. Jamaati, M.R. Toroghinejad, and H. Edris, Mater. Des. 54, 168 (2014).CrossRefGoogle Scholar
  19. 19.
    Ö. Balcı, D. Ağaoğulları, H. Gökçe, İ. Duman, and M.L. Öveçoğlu, J. Alloys Compd. 586, S78 (2014).CrossRefGoogle Scholar
  20. 20.
    K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, and K. Wu, Compos. Part A Appl. S 43, 1280 (2012).CrossRefGoogle Scholar
  21. 21.
    J.E. Mogonye, A. Srivastava, S. Gopagoni, R. Banerjee, and T.W. Scharf, Tribol. Lett. 64, 12 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Shen, W. Yin, Q. Wei, Y. Li, J. Liu, and L. An, J. Mater. Res. 28, 1835 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Conrad, Prog. Mater Sci. 26, 123 (1981).CrossRefGoogle Scholar
  24. 24.
    M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Shen, B. Chen, X. Ye, H. Imai, J. Umeda, and K. Kondoh, Mater. Des. 116, 99 (2017).CrossRefGoogle Scholar
  26. 26.
    R.I. Jaffee, H.R. Ogden, and D.J. Maykuth, Trans. AIME 188, 1261 (1950).Google Scholar
  27. 27.
    Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).CrossRefGoogle Scholar
  28. 28.
    R.J. Lederich, S.M.L. Sastry, J.E. O’Neal, and B.B. Rath, Mater. Sci. Eng. 33, 183 (1978).CrossRefGoogle Scholar
  29. 29.
    Y.K. Li, F. Liu, G.P. Zheng, D. Pan, Y.H. Zhao, and Y.M. Wang, Mater. Sci. Eng. A 573, 141 (2013).CrossRefGoogle Scholar
  30. 30.
    R.L. Fleischer, Acta Metall. 10, 835 (1962).CrossRefGoogle Scholar
  31. 31.
    R.L. Fleischer, Acta Metall. 11, 203 (1963).CrossRefGoogle Scholar
  32. 32.
    J.H. Shen, Y.L. Li, and Q. Wei, Mater. Sci. Eng. A 582, 270 (2013).CrossRefGoogle Scholar
  33. 33.
    H.W. Rosenberg and W.D. Nix, Metall. Trans. 4, 1333 (1973).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Joining and Welding Research InstituteOsaka UniversityOsakaJapan

Personalised recommendations