Advertisement

JOM

, Volume 70, Issue 5, pp 650–655 | Cite as

Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy

Powder Metallurgy of Non-Ferrous Metals
  • 308 Downloads

Abstract

Porous magnesium (Mg) samples with various overall porosities (28.4 ± 1.8%, 35.5 ± 2.5%, 45.4 ± 1.9%, and 62.4 ± 2.2%) were processed through powder metallurgy and characterized to study their mechanical properties. Different porosities were obtained by utilizing different mass fractions of space holder camphene. Camphene was removed by sublimation before sintering and contributed to processing porous Mg with high purity and small average pore size. The average pore size increased from 5.2 µm to 15.1 µm with increase of the porosity from 28.4 ± 1.8% to 62.4 ± 2.2%. Compressive strain–stress data showed that the strain hardening rate, yield strength, and ultimate compressive strength decreased with increase of the porosity. The theoretical yield strength of porous Mg obtained using the Gibson–Ashby model agreed with experimental data.

Notes

Acknowledgement

The authors acknowledge financial support from the National Science Foundation under Award No. 1449607. The authors thank Mr. Chin Shih Hsu for collecting the XRD data.

References

  1. 1.
    C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi, Mater. Lett. 58, 357 (2004).CrossRefGoogle Scholar
  2. 2.
    N. Zou and Q. Li, J. Mater. Sci. 51, 5232 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Cay, H. Xu, and Q. Li, Mater. Sci. Eng., A 574, 137 (2013).CrossRefGoogle Scholar
  4. 4.
    Q. Li, Mater. Des. 89, 978 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Capek and D. Vojtech, Mater. Sci. Eng., C 35, 21 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Bi, Y. Zheng, and Y. Li, Mater. Lett. 161, 583 (2015).CrossRefGoogle Scholar
  7. 7.
    C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Scr. Mater. 45, 1147 (2001).CrossRefGoogle Scholar
  8. 8.
    G.L. Hao, F.S. Han, and W.D. Li, J. Porous Mater. 16, 251 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Shen, Y. Feng, S.-L. Wang, Y. Xu, and X.-B. Zhang, Met. Funct. Mater. 3, 003 (2006).Google Scholar
  10. 10.
    H. Zhuang, Y. Han, and A. Feng, Mater. Sci. Eng., C 28, 1462 (2008).CrossRefGoogle Scholar
  11. 11.
    H. Xu, N. Zou, Q. Li, JOM 1 (2017).Google Scholar
  12. 12.
    Q. Li, Mater. Lett. 133, 83 (2014).CrossRefGoogle Scholar
  13. 13.
    L. Yuan, L. Yanxiang, W. Jiang, and Z. Huawei, Mater. Sci. Eng., A 402, 47 (2005).CrossRefGoogle Scholar
  14. 14.
    Z.-K. Xie, M. Tane, S.-K. Hyun, Y. Okuda, and H. Nakajima, Mater. Sci. Eng., A 417, 129 (2006).CrossRefGoogle Scholar
  15. 15.
    G. Jiang and G. He, Mater. Sci. Eng., C 43, 317 (2014).CrossRefGoogle Scholar
  16. 16.
    G. Jiang, Q. Li, C. Wang, J. Dong, and G. He, J. Mech. Behav. Biomed. Mater. 64, 139 (2016).CrossRefGoogle Scholar
  17. 17.
    X. Zhang, X.W. Li, J.G. Li, and X.D. Sun, Mater. Sci. Eng., C 42, 362 (2014).CrossRefGoogle Scholar
  18. 18.
    F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang, and K. Yang, J. Mater. Sci. Technol. 25, 123 (2009).Google Scholar
  19. 19.
    T.L. Nguyen, M.P. Staiger, G.J. Dias, and T.B.F. Woodfield, Adv. Eng. Mater. 13, 872 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Wang, Z. Li, Y. Huang, K. Wang, X. Wang, and F. Han, Mater. Des. 64, 324 (2014).CrossRefGoogle Scholar
  21. 21.
    M.-H. Kang, H.-D. Jung, S.-W. Kim, S.-M. Lee, H.-E. Kim, Y. Estrin, and Y.-H. Koh, Mater. Lett. 108, 122 (2013).CrossRefGoogle Scholar
  22. 22.
    J.O. Osorio-Hernández, M.A. Suarez, R. Goodall, G.A. Lara-Rodriguez, I. Alfonso, and I.A. Figueroa, Mater. Des. 64, 136 (2014).CrossRefGoogle Scholar
  23. 23.
    M.H. Kang, T.S. Jang, S.W. Kim, H.S. Park, J. Song, H.E. Kim, K.H. Jung, and H.D. Jung, Mater. Sci. Eng., C 62, 634 (2016).CrossRefGoogle Scholar
  24. 24.
    S.-W. Yook, H.-E. Kim, and Y.-H. Koh, Mater. Lett. 63, 1502 (2009).CrossRefGoogle Scholar
  25. 25.
    E.-J. Lee, Y.-H. Koh, B.-H. Yoon, H.-E. Kim, and H.-W. Kim, Mater. Lett. 61, 2270 (2007).CrossRefGoogle Scholar
  26. 26.
    J. Han, C. Hong, X. Zhang, J. Du, and W. Zhang, J. Eur. Ceram. Soc. 30, 53 (2010).CrossRefGoogle Scholar
  27. 27.
    R. Jenkins, R.L. Snyder, Introduction to X-ray Powder Diffractometry, ed. J.D. Winefordner (New York, Wiley, 1996).Google Scholar
  28. 28.
    J. Capek and D. Vojtech, Mater. Sci. Eng., C 33, 564 (2013).CrossRefGoogle Scholar
  29. 29.
    L.J. Gibson, J. Biomech. 18, 317 (1985).CrossRefGoogle Scholar
  30. 30.
    X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, and Y.X. Li, Mater. Lett. 64, 1871 (2010).CrossRefGoogle Scholar
  31. 31.
    M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal Foams: A Design Guide (Elsevier, Amsterdam, 2000).Google Scholar
  32. 32.
    M.M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys (Materials Park: ASM International, 1999).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations