Advertisement

JOM

, Volume 70, Issue 5, pp 680–690 | Cite as

Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals

  • R. Elliott
  • K. Coley
  • S. Mostaghel
  • M. Barati
Characterization of Advanced High Strength Steels for Automobiles

Abstract

The increasing demand for high-performance steel alloys has led to development of transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) alloys over the past three decades. These alloys offer exceptional combinations of high tensile strength and ductility. Thus, the mechanical behavior of these alloys has been a subject of significant work in recent years. However, the challenge of economically providing Mn in the quantity and purity required by these alloys has received considerably less attention. To enable commercial implementation of ultrahigh-Mn alloys, it is desirable to lower the high material costs associated with their production. Therefore, the present work reviews Mn processing routes in the context of the chemical requirements of these alloys. The aim of this review is to assess the current state of the art regarding reduction of manganese ores and provide a comprehensive reference for researchers working to mitigate material processing costs associated with Mn production. The review is presented in two parts: Part 1 introduces TRIP and TWIP alloys, current industrial practice, and pertinent thermodynamic fundamentals; Part 2 addresses available literature regarding reduction of Mn ores and oxides, and seeks to identify opportunities for future process development.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC, STPGP463252-14). Additional thanks go to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for in-kind support and technical expertise.

Supplementary material

11837_2018_2769_MOESM1_ESM.pdf (451 kb)
Supplementary material 1 (PDF 451 kb)

References

  1. 1.
    RPA, Manganese, The Global PictureA Socio Economic Assessment, report for the International Manganese Institute (Loddon, Norfolk, UK, 2015).Google Scholar
  2. 2.
    The International Manganese Institute, 2013 Public Annual Market Research Report (2013).Google Scholar
  3. 3.
    J.E. Post, Proc. Natl. Acad. Sci. 96, 3447 (1999).CrossRefGoogle Scholar
  4. 4.
    R.H. Eric, Production of Ferroalloys, 1st ed. (New York: Elsevier, 2014).Google Scholar
  5. 5.
    J.M. Cullen, J.M. Allwood, and M.D. Bambach, Environ. Sci. Technol. 46, 13048 (2012).CrossRefGoogle Scholar
  6. 6.
    B.C. De Cooman, L. Chen, H.S. Kim, Y. Estrin, S.K. Kim, and H. Voswinckel, Microstructure and Texture in Steels, chap. 10, eds. A. Haldar, S. Suwas, and D. Bhattacharjee (London: Springer, 2009).Google Scholar
  7. 7.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
  8. 8.
    O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).Google Scholar
  9. 9.
    L. Chen, Y. Zhao, and X. Qin, Acta Metall. Sin. (Engl. Lett.) 26, 1 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Chin, W.T. Cho, S.K. Kim, Y. Kim, T.J. Song, and T. Kim, in METEC 2nd ESTAD (2015), pp. 65–68.Google Scholar
  11. 11.
    B.C. De Cooman, K. Chin, and J. Kim, New Trends and Developments in Automotive System Engineering (InTech, 2011). https://cdn.intechopen.com/pdfs-wm/13349.pdf.
  12. 12.
    B.C. De Cooman, O. Kwon, and K.-G. Chin, Mater. Sci. Technol. 28, 513 (2012).CrossRefGoogle Scholar
  13. 13.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, Int. J. Plast. 16, 1391 (2000).CrossRefGoogle Scholar
  14. 14.
    W. Li, B. Xu, L. Hou, and P. Han, Ironmak. Steelmak. 38, 540 (2011).CrossRefGoogle Scholar
  15. 15.
    Y.-K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2016).CrossRefGoogle Scholar
  16. 16.
    D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, JESTECH 15, 1 (2012).Google Scholar
  17. 17.
    Z.H. Cai, H. Ding, X. Xue, and Q.B. Xin, Mater. Sci. Eng. A 560, 388 (2013).CrossRefGoogle Scholar
  18. 18.
    V. Hernandez, S. Mostaghel, S. Ge, C. Harris, and M. Cramer, in AISTech 2016 Proceedings 775 (2016).Google Scholar
  19. 19.
    S. Keeler and M. Kimchi, Advanced High-Strength Steels Application Guidelines V5 (WorldAutoSteel, 2015). http://www.worldautosteel.org/about/.
  20. 20.
    J.D. Clayton, Nonlinear Mechanics of Crystals (Solid Mechanics and Its Applications) (Berlin: Springer, 2010).Google Scholar
  21. 21.
    D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig, Acta Mater. 100, 178 (2015).CrossRefGoogle Scholar
  22. 22.
    O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, Le J. Phys. IV 7, 383 (1997).Google Scholar
  23. 23.
    D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng. A 438–440, 25 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Lee, Y. Estrin, and B.C. De Cooman, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 3136 (2013).CrossRefGoogle Scholar
  25. 25.
    J.G. Speer, E. De Moor, and A.J. Clarke, Mater. Sci. Technol. 31, 3 (2015).CrossRefGoogle Scholar
  26. 26.
    L. Chen, H.-S. Kim, S.-K. Kim, and B.C. De Cooman, ISIJ Int. 47, 1804 (2007).CrossRefGoogle Scholar
  27. 27.
    L.A. Dobrzański and W. Borek, J. Achiev. Mater. Manuf. Eng. 55, 230 (2012).Google Scholar
  28. 28.
    B. Gumus, B. Bal, G. Gerstein, D. Canadinc, H.J. Maier, F. Guner, and M. Elmadagli, Mater. Sci. Eng. A 648, 104 (2015).CrossRefGoogle Scholar
  29. 29.
    C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L. Wong, F. Roters, D.A. Molodov, and G. Gottstein, Acta Mater. 100, 155 (2015).CrossRefGoogle Scholar
  30. 30.
    H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, Scr. Mater. 63, 961 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Jabłońska, G. Niewielski, and R. Kawalla, Solid State Phenom. 212, 87 (2013).CrossRefGoogle Scholar
  32. 32.
    P. Lan and J. Zhang, Steel Res. Int. 87, 250 (2016).CrossRefGoogle Scholar
  33. 33.
    D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).CrossRefGoogle Scholar
  34. 34.
    R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scr. Mater. 59, 963 (2008).CrossRefGoogle Scholar
  35. 35.
    K.N. Vdovin, N.A. Feoktistov, and D.A. Gorlenko, Mater. Sci. Forum 870, 339 (2016).CrossRefGoogle Scholar
  36. 36.
    A.S. Hamada, L.P. Karjalainen, and M.C. Somani, Mater. Sci. Eng. A 467, 114 (2007).CrossRefGoogle Scholar
  37. 37.
    A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe, Acta Mater. 124, 305 (2017).CrossRefGoogle Scholar
  38. 38.
    I. Tsukatani, S. Hashimoto, and T. Inoue, ISIJ Int. 31, 992 (1991).CrossRefGoogle Scholar
  39. 39.
    L.H. Wang, D. Tang, H.T. Jiang, J. Bin Liu, and Y. Chen, Adv. Mater. Res. 399–401, 254 (2011).Google Scholar
  40. 40.
    S. Chatterjee, M. Murugananth, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 819 (2007).CrossRefGoogle Scholar
  41. 41.
    B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004).CrossRefGoogle Scholar
  42. 42.
    P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, ISIJ Int. 41, 1068 (2001).CrossRefGoogle Scholar
  43. 43.
    P. Von Schweinichen, Z. Chen, D. Senk, and A. Lob, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 5416 (2013).CrossRefGoogle Scholar
  44. 44.
    H. Ding, H. Ding, C. Lin Qiu, Z. You Tang, J. Min Zeng, and P. Yang, J. Iron Steel Res. Int. 18, 36 (2011).CrossRefGoogle Scholar
  45. 45.
    G. Gigacher, R. Pierer, J. Wiener, and C. Bernhard, Adv. Eng. Mater. 8, 1096 (2006).CrossRefGoogle Scholar
  46. 46.
    M. Daamen, B. Wietbrock, S. Richter, and G. Hirt, Steel Res. Int. 82, 70 (2011).CrossRefGoogle Scholar
  47. 47.
    T. Taylor, G. Fourlaris, and P. Evans, Mater. Sci. Technol. 33, 487 (2016).CrossRefGoogle Scholar
  48. 48.
    J. Park, J.-S. Kim, M. Kang, S.S. Sohn, W.T. Cho, H.S. Kim, and S. Lee, Sci. Rep. 7, 40231 (2017).CrossRefGoogle Scholar
  49. 49.
    M. Ha, W.S. Kim, H.K. Moon, B.J. Lee, and S. Lee, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39A, 1087 (2008).CrossRefGoogle Scholar
  50. 50.
    SMS Group Newsletter, Belt Casting Technology for Innovative Steel Grades (2016), p. 12. https://www.sms-group.com/press-media/sms-newsletter/.
  51. 51.
    J.-B. Nam, China Automot. Steel Conf. (Guangzhou: WorldSteel/CISA, 2013).Google Scholar
  52. 52.
    BaoSteel, BaoSteel Automotive Advanced High Strength Steels (2014).Google Scholar
  53. 53.
    ArcellorMittal, Steels for Cold Stamping: Fortiform ® (2016). http://sections.arcelormittal.com/library/product-catalogues.html.
  54. 54.
    USS POSCO, Advanced High Strength Steel (2013).Google Scholar
  55. 55.
    T. Christie, Mineral Commodity Report 7Manganese (2017). https://www.nzpam.govt.nz/doing-business/investing-minerals/resources-potential/.
  56. 56.
    D.B. Wellbeloved, P.M. Craven, and J.W. Waudby, Ullmann's Encyclopedia of Industrial Chemistry (2000).  https://doi.org/10.1002/14356007.a16_077.
  57. 57.
    M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (New York: Elsevier, 2013).Google Scholar
  58. 58.
    G. Hils, A. Newirkowez, M. Kroker, U. Grethe, R. Schmidt-Jürgensen, J. Kroos, and K.-H. Spitzer, Steel Res. Int. 86, 411 (2015).CrossRefGoogle Scholar
  59. 59.
    P.K. Sen, Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, ed. R. Sharma (Cham: Springer International, 2017), pp. 395–422.  https://doi.org/10.1007/978-3-319-52557-0.CrossRefGoogle Scholar
  60. 60.
    J.R. Donald and C. McLachlan, in 56th Conf. Metall. (Vancouver, Canada, 2017).Google Scholar
  61. 61.
    L.A. Corathers, 2013 Minerals Yearbook (US Geological Survey, 2013), pp. 1–21.Google Scholar
  62. 62.
    S. Petersen, A. Krätschell, and M.D. Hannington, EAGE/DGG Work. Deep Miner. Explor. (2016).Google Scholar
  63. 63.
    V. Marchig, Cosmo-and Geochemistry (Berlin, Heidelberg: Springer, 1981), pp. 99–126.Google Scholar
  64. 64.
    American Metal Market, AMM Monthly Averages September 2015 Nonferrous Scrap Prices (2015).Google Scholar
  65. 65.
    M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (New York: Elsevier, 2013).Google Scholar
  66. 66.
    W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 137 (2007).CrossRefGoogle Scholar
  67. 67.
    The International Manganese Institute, IMnI Statistics 2017 (2017).Google Scholar
  68. 68.
    International Manganese Institute, IMnI Annual Review 2016 (2016).Google Scholar
  69. 69.
    J. Madias, in AISTech: Iron Steel Technol. Conf. Proc. (2011), pp. 401–412.Google Scholar
  70. 70.
    R. Sen, Production of ferro Manganese Through Blast Furnace Route, Ferro Alloy Industries in the Liberalised Economy Conference, eds. A.K. Vaish, S.D. Singh, N.G. Goswami, and P. Ramachandrarao (Jamshedpur: NML, 1997), pp. 83–91.Google Scholar
  71. 71.
    S.E. Olsen and T. Lindstad, Electr. Furn. Conf. 205 (2002).Google Scholar
  72. 72.
    S. Olsen, M. Tangstad, and T. Lindstad, Production of Manganese Ferroalloys (Trondheim: Tapir Akademisk Forlag, 2007).Google Scholar
  73. 73.
    M. Tangstad and S.E. Olsen, in INFACON 7 (1995), pp. 621–630.Google Scholar
  74. 74.
    P. Mackey, E. Grimsey, R. Jones, and G. Brooks, eds., Celebrating the Megascale: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson (Springer, 2016).Google Scholar
  75. 75.
    M. Kalenga, P. Xiaowei, and M. Tangstad, in 13th Int. Ferroalloys Congr. (2013), pp. 647–654.Google Scholar
  76. 76.
    S.E. Olsen and M. Tangstad, INFACON X: Transformation through Technology (2004), p. 231.Google Scholar
  77. 77.
    W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 160 (2007).CrossRefGoogle Scholar
  78. 78.
    W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 178 (2007).CrossRefGoogle Scholar
  79. 79.
    J. Lu, D. Dreisinger, and T. Glück, Hydrometallurgy 161, 45 (2016).CrossRefGoogle Scholar
  80. 80.
    Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, and C.W. Kim, Metall. Mater. Trans. B 43, 1 (2012).Google Scholar
  81. 81.
    T. Sharma, Int. J. Miner. Process. 35, 191 (1992).CrossRefGoogle Scholar
  82. 82.
    S. Xiao, W. Liu, and L. Gao, Ionics (Kiel). 8 (2016).Google Scholar
  83. 83.
    A.J. Godsell and D.J. Fray, Metall. Trans. B 21, 217 (1990).CrossRefGoogle Scholar
  84. 84.
    D.R. Sadoway, J. Mater. Res. 10, 487 (1995).CrossRefGoogle Scholar
  85. 85.
    A. Allanore, L. Yin, and D.R. Sadoway, Nature 497, 353 (2013).CrossRefGoogle Scholar
  86. 86.
    K. Ohler-Martins and D. Senk, Steel Res. Int. 79, 811 (2008).CrossRefGoogle Scholar
  87. 87.
    K. Ohler-Martins, E.J. Njamen, D. Senk, H.-W. Gudenau, and J.C. D’Abreau, in 3rd Int. Meet. Ironmak. (2008), pp. 687–700.Google Scholar
  88. 88.
    Z. Georgeou, C.F. Redeker, J. Schottler, R.-H. Gronebaum, A. Redenius, J. Kroos, A. Newirkowez, D. Rohrberg, J. Wendelstorf, K.-H. Spitzer, and R. Nystrom, Cost-Efficient Metallurgy for the Production of Novel Ultra High- Strength Deep-Drawable Steel Grades with High Mn Contents from 10 to 25 Wt. % by Using the Eaf Steelmaking Route (2010).  https://doi.org/10.2777/91273.
  89. 89.
    K.-H. Spitzer and C. Redeker, EP2242862 (2008).Google Scholar
  90. 90.
    M. Kirschen, K. Badr, and H. Pfeifer, Energy 36, 6146 (2011).CrossRefGoogle Scholar
  91. 91.
    K.L. Berg and S.E. Olsen, Metall. Mater. Trans. B 31, (2000).Google Scholar
  92. 92.
    A.A. El-Geassy, M.I. Nasr, M.A. Yousef, M.H. Khedr, and M. Bahgat, Ironmak. Steelmak. 27, 117 (2000).CrossRefGoogle Scholar
  93. 93.
    Y.B. Gao, H.G. Kim, and H.Y. Sohn, Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 121, 109 (2012).CrossRefGoogle Scholar
  94. 94.
    R.J. Ishak and T. Lindstad, in Metall. Mater. Process. Princ. Technol. (2003), pp. 63–73.Google Scholar
  95. 95.
    P. Perreault and G.S. Patience, Chem. Eng. J. 295, 227 (2016).CrossRefGoogle Scholar
  96. 96.
    M. Tangstad, M. Sibony, S. Wasb, and R. Tronstad, in INFACON 9 (2001), pp. 202–207.Google Scholar
  97. 97.
    K. Turkova, D. Slizovskiy, and M. Tangstad, ISIJ Int. 54, 1204 (2014).CrossRefGoogle Scholar
  98. 98.
    M. Zaki, M. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 311, 97 (1998).CrossRefGoogle Scholar
  99. 99.
    N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1615 (2004).CrossRefGoogle Scholar
  100. 100.
    A. Bhalla and R.H. Eric, in Fourteenth Int. Ferroalloys Congr. (Kiev, Ukraine, 2015), pp. 461–469.Google Scholar
  101. 101.
    B. Khoshandam, R.V. Kumar, and E. Jamshidi, Can. Metall. Q. 46, 365 (2007).CrossRefGoogle Scholar
  102. 102.
    E.R. Stobbe, B.A. de Boer, and J.W. Geus, Catal. Today 47, 161 (1999).CrossRefGoogle Scholar
  103. 103.
    R. Kononov, O. Ostrovski, and S. Ganguly, in INFACON XI (New Delhi, India, 2007), pp. 256–267.Google Scholar
  104. 104.
    R. Kononov, O. Ostrovski, and S. Ganguly, Metall. Mater. Trans. B 39, 662 (2008).CrossRefGoogle Scholar
  105. 105.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1099 (2009).CrossRefGoogle Scholar
  106. 106.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1107 (2009).CrossRefGoogle Scholar
  107. 107.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1115 (2009).CrossRefGoogle Scholar
  108. 108.
    M.I. Zaki, M.A. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 303, 171 (1997).CrossRefGoogle Scholar
  109. 109.
    R.P. Westerdahl and P.J. Leader, Inorg. Nucl. Chem. Lett. 5, 199 (1969).CrossRefGoogle Scholar
  110. 110.
    C. Naganna, Proc. Indian Acad. Sci. Sect. A 16 (1963).Google Scholar
  111. 111.
    K. Terayama and M. Ikeda, Trans. Japan Inst. Met. 24, 754 (1983).CrossRefGoogle Scholar
  112. 112.
    A. Roine, HSC Chemistry 6.0—User’s Guide (Poir: Outokumpa Research Oy, 2006).Google Scholar
  113. 113.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin. J. Sangster, and M.-A. Van Ende, Calphad 54, 35 (2016).CrossRefGoogle Scholar
  114. 114.
    O. Ostrovski and G. Zhang, AIChE J. 52, 300 (2006).CrossRefGoogle Scholar
  115. 115.
    S.R. Shatynski, Oxid. Met. 13, 105 (1979).CrossRefGoogle Scholar
  116. 116.
    D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 34, 279 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.McMaster Steel Research Centre, Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  3. 3.Hatch LtdMississaugaCanada

Personalised recommendations