Advertisement

JOM

, Volume 70, Issue 4, pp 581–586 | Cite as

Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric–Phosphoric Acid Leach Solution of Scheelite

  • Yulong Liao
  • Zhongwei Zhao
Technical Communication

Abstract

Tungsten was recovered from sulfuric–phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51334008). We thank Xiamen Tungsten Co., Ltd., China for provision of leach solution.

References

  1. 1.
    H.G. Li, J.G. Yang, and K. Li, Tungsten Metallurgy (Changsha: Central South University Press, 2010), pp. 1–250.Google Scholar
  2. 2.
    E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (New York: Kluwer Academic/Plenum, 1999), pp. 61–254.CrossRefGoogle Scholar
  3. 3.
    P.B. Queneau, D.K. Huggins, and L.W. Beckstead, US Patent 4320095 (1982).Google Scholar
  4. 4.
    A.M. Amer, Hydrometallurgy 58, 251 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Gürmen, S. Timur, C. Arslan, and I. Duman, Hydrometallurgy 51, 227 (1999).CrossRefGoogle Scholar
  6. 6.
    C. Kahruman and I. Yusufoglu, Hydrometallurgy 81, 182 (2006).CrossRefGoogle Scholar
  7. 7.
    G.H. Xuin, D.Y. Yu, and Y.F. Su, Hydrometallurgy 16, 27 (1986).CrossRefGoogle Scholar
  8. 8.
    Z.W. Zhao and J.T. Li, US Patent 8771617 B2 (2014).Google Scholar
  9. 9.
    J.T. Li and Z.W. Zhao, Hydrometallurgy 163, 55 (2016).CrossRefGoogle Scholar
  10. 10.
    C.R. Kurtak, US Patent 3158438 (1964).Google Scholar
  11. 11.
    T.K. Kim, M.B. MacInnis, M.C. Vogt, and R.P. McClintic, US Patent 4369165 (1983).Google Scholar
  12. 12.
    E. Lassner, Int. J. Refract. Met. Hard Mater. 13, 35 (1995).CrossRefGoogle Scholar
  13. 13.
    A.G. Kholmogorov, O.N. Kononova, S.V. Kachin, O.P. Kalyakina, G.L. Pashkov, and V.P. Kyrillova, Hydrometallurgy 53, 177 (1999).CrossRefGoogle Scholar
  14. 14.
    Z.R. Hu, China Tungsten Ind. 9, 1 (1994).Google Scholar
  15. 15.
    V. Zbranek, Z. Zbranek, and D.A. Burnham, US Patent 4092400 (1978).Google Scholar
  16. 16.
    G.Q. Zhang and Q.X. Zhang, Chin. J. Rare Met. 27, 254 (2003).MathSciNetGoogle Scholar
  17. 17.
    G.Q. Zhang, W.J. Guan, L.S. Xiao, and Q.X. Zhang, Hydrometallurgy 165, 233 (2016).CrossRefGoogle Scholar
  18. 18.
    B. Burwell, US Patent 3256057 (1966).Google Scholar
  19. 19.
    B. Burwell, US Patent 3256058 (1966).Google Scholar
  20. 20.
    B.A. Moyer, Solvent Extr. Ion Exch. 5, 195 (1987).CrossRefGoogle Scholar
  21. 21.
    V.I. Lakshmanan and B.C. Haldar, J. Indian Chem. Soc. 47, 72 (1970).Google Scholar
  22. 22.
    M.R. Antonio, R. Chiarizia, and F. Jaffrennou, Sep. Sci. Technol. 45, 1689 (2010).CrossRefGoogle Scholar
  23. 23.
    V. Yatirajam and S. Dhamija, Talanta 24, 52 (1977).CrossRefGoogle Scholar
  24. 24.
    M.T. Pope, Heteropoly and Isopoly Oxometalates (New York: Springer, 1983), pp. 1–180.Google Scholar
  25. 25.
    Y.D. Gu and M.F. Cui, Chem. Res. Chin. Univ. 6, 674 (1985).Google Scholar
  26. 26.
    M. Muramatsu, S. Yoneda, T. Shimazaki, and S. Obata, US Patent 20100324282 A1(2010).Google Scholar
  27. 27.
    Y.L. Liao and Z.W. Zhao, Hydrometallurgy 169, 515 (2017).CrossRefGoogle Scholar
  28. 28.
    T. Sato, T. Nakamura, and M. Ikeno, Hydrometallurgy 15, 209 (1985).CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, T.A. Zhang, D. Dreisinger, G.Z. Lv, G.Q. Zhang, W.G. Zhang, and Y. Liu, Can. Metall. Q. 56, 281 (2017).CrossRefGoogle Scholar
  30. 30.
    Y.Q. Ma, X.W. Wang, M.Y. Wang, C.J. Jiang, X.Y. Xiang, and X.L. Zhang, Hydrometallurgy 153, 38 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Grzeszczyk and M. Regel-Rosocka, Hydrometallurgy 86, 72 (2007).CrossRefGoogle Scholar
  32. 32.
    M.B. Mansur, S.D.F. Rocha, F.S. Magalhães, and J.S. Benedetto, J. Hazard. Mater. 150, 669 (2008).CrossRefGoogle Scholar
  33. 33.
    M. Jamialahmadi and H. Müller-Steinhagen, Dev. Chem. Eng. Miner. Process. 8, 587 (2000).Google Scholar
  34. 34.
    S. Van Der Sluis, G.J. Witkamp, and G.M. Van Rosmalen, J. Cryst. Growth 79, 620 (1986).CrossRefGoogle Scholar
  35. 35.
    E. Pelitti, US Patent 3415629 (1968).Google Scholar
  36. 36.
    S. Kurowski, US Patent 20040089599 A1 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations