JOM

, Volume 70, Issue 5, pp 672–679 | Cite as

Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese

  • Guanqiao Su
  • Xiuhua Gao
  • Dazheng Zhang
  • Linxiu Du
  • Jun Hu
  • Zhenguang Liu
Characterization of Advanced High Strength Steels for Automobiles

Abstract

We elucidate the relationship between the volume fraction of austenite and the Charpy impact toughness in a medium-Mn steel in terms of microstructural evolution with impact temperature. Different from retained austenite in the matrix after direct quenching, sub-micron lath-shaped morphology-reversed austenite in medium-Mn steel was produced by intercritical annealing. We found that reversed austenite steadily affected the fracture mode; only ductile fractures and dimples decreased with decreasing impact temperature. After the impact fracture test, the content of reversed austenite in the matrix increased slightly with a decreasing impact temperature due to the stability of the austenite grains caused by recrystallization of α′ martensite. Reversed austenite slightly decreased during the impact process with a decreasing impact temperature.

Notes

Acknowledgements

The authors gratefully appreciate the financial support by the National High-tech R&D Program (863 Program) No. 2015AA03A501.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Y.-K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014).CrossRefGoogle Scholar
  3. 3.
    S. Lee, S.J. Lee, S.S. Kumar, K. Lee, and B.C.D. Cooman, Metall. Mater. Trans. A 42, 3638 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Kuzmina, D. Ponge, and D. Raabe, Acta Mater. 86, 182 (2015).CrossRefGoogle Scholar
  6. 6.
    K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-ishi, and N.J. Kim, Scr. Mater. 69, 420 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Choi, S. Lee, J. Lee, F. Barlat, and B.C.D. Cooman, Mater. Sci. Eng., A 687, 200 (2017).CrossRefGoogle Scholar
  8. 8.
    B.H. Sun, F. Fazeli, C. Scott, X.J. Yan, Z.W. Liu, X.Y. Qin, and S. Yue, Scr. Mater. 130, 49 (2017).CrossRefGoogle Scholar
  9. 9.
    D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 44, 286 (2013).CrossRefGoogle Scholar
  10. 10.
    S.J. Lee, S. Lee, and B.C.D. Cooman, Scr. Mater. 64, 649 (2011).CrossRefGoogle Scholar
  11. 11.
    Q. Zhou, L.H. Qian, J. Tan, J.Y. Meng, and F.C. Zhang, Mater. Sci. Eng., A 578, 370 (2013).CrossRefGoogle Scholar
  12. 12.
    B.C.D. Cooman, P. Gibbs, S. Lee, and D.K. Matlock, Metall. Mater. Trans. A 44, 2563 (2013).CrossRefGoogle Scholar
  13. 13.
    G.H. Gao, H. Zhang, X.L. Gui, P.L. Luo, Z.L. Tan, and B.Z. Bai, Acta Mater. 76, 425 (2014).CrossRefGoogle Scholar
  14. 14.
    R.L. Miller, Metall. Trans. 3, 905 (1972).CrossRefGoogle Scholar
  15. 15.
    H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, and R.D.K. Misra, J. Alloys Compd. 695, 2072 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).CrossRefGoogle Scholar
  17. 17.
    G.Q. Su, X.H. Gao, D.Z. Zhang, C.S. Cui, L.X. Du, C. Yu, J. Hu, and Z.G. Liu, Corrosion 73, 1367 (2017).CrossRefGoogle Scholar
  18. 18.
    C.M. Enloe, J.P. Singh and J.J. Coryell, in Proceedings of the International Symposium on New Developments in Advanced High-Strength Sheet Steels (Keystone, CO, USA: Association for Iron & Steel Technology, Warrendale, PA, 2017), pp. 110Google Scholar
  19. 19.
    G.Q. Su, X.H. Gao, L.X. Du, D.Z. Zhang, J. Hu, and Z.G. Liu, Int. J. Electrochem. Sci. 11, 9447 (2017).Google Scholar
  20. 20.
    G.Q. Su and X.H. Gao, Materials 10, 938 (2017).CrossRefGoogle Scholar
  21. 21.
    ISO 6892-1, Metallic Materials-tensile Testing-Part 1: Method of Test at Room Temperature (2009)Google Scholar
  22. 22.
    K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ Int. 32, 1311 (1992).CrossRefGoogle Scholar
  23. 23.
    X.H. Hu, X. Sun, L.G. Hector Jr, and Y. Ren, Acta Mater. 132, 230 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Mater. Sci. Eng., A 577, 161 (2013).CrossRefGoogle Scholar
  25. 25.
    L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Mater. Sci. Eng., A 529, 192 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Srivastava, A.F. Bower, L.G. Hector Jr, J.E. Carsley, L. Zhang, and F. Abu-Farha, Modell. Simul. Mater. Sci. Eng. 24, 2 (2016).CrossRefGoogle Scholar
  27. 27.
    D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector Jr, and A. Bower, Int. J. Fract. (2017).  https://doi.org/10.1007/s10704-017-0235-x.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Guanqiao Su
    • 1
  • Xiuhua Gao
    • 1
  • Dazheng Zhang
    • 1
  • Linxiu Du
    • 1
  • Jun Hu
    • 1
  • Zhenguang Liu
    • 2
  1. 1.The State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations