Skip to main content

Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel


Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure–property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    A. Yadollahi, D. Seely, B. Patton, and N. Shamsaei, in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2015

  2. 2.

    A. Yadollahi, N. Shamsaei, S.M. Thompson, and D. Seely, Mater. Sci. Eng. A A644, 171 (2015).

    Article  Google Scholar 

  3. 3.

    G.T. Gray, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert, and S.J. Fensin, Acta Mater. 138, 140 (2017).

    Article  Google Scholar 

  4. 4.

    A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki, Acta Mater. 50, 1547 (2002).

    Article  Google Scholar 

  5. 5.

    T.R. Smith, J.D. Sugar, C. San Marchi, and J.M. Schoenung, Pressure vessels and piping conference (PVP 2017), American Society of Mechanical Engineers, 2017

  6. 6.

    H. Jackson, C. San Marchi, D. Balch, B. Somerday, and J. Michael, Metall. Mater. Trans. A 47A, 4334 (2016).

    Article  Google Scholar 

  7. 7.

    ASTM A479, ASTM International, 2016

  8. 8.

    S. Kalpakjian and S.R. Schmid, Manufacturing Engineering and Technology, 6th ed. (Singapore: Prentice Hall, 2010), pp. 1–15.

    Google Scholar 

  9. 9.

    J.A. Brooks and A.W. Thompson, Int. Mater. Rev. 36, 16 (1991).

    Article  Google Scholar 

  10. 10.

    S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).

    Article  Google Scholar 

  11. 11.

    F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed. (Oxford: Elsevier, 2004), pp. 1–10.

    Book  Google Scholar 

  12. 12.

    A. Das, S. Sivaprasad, P. Chakraborti, and S. Tarafder, Philos. Mag. Lett. 91, 664 (2011).

    Article  Google Scholar 

  13. 13.

    J.A. Brooks, T.J. Headley, and C.V. Robino, MRS Proc. 625, 21 (2000).

    Article  Google Scholar 

  14. 14.

    N. Hansen and X. Huang, Acta Mater. 46, 1827 (1998).

    Article  Google Scholar 

  15. 15.

    L.P. Kubin and A. Mortensen, Scr. Mater. 48, 119 (2003).

    Article  Google Scholar 

  16. 16.

    C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, and I.O.P. Conf, Ser. Mater. Sci. Eng. 89, 012038 (2015).

    Google Scholar 

  17. 17.

    S.K. Lawrence, H.M. Zbib, M.J. Cordill, S. Wurster, and D.F. Bahr, Metall. Mater. Trans. A 45A, 4307 (2014).

    Article  Google Scholar 

  18. 18.

    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A A527, 2738 (2010).

    Article  Google Scholar 

  19. 19.

    H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999).

    MathSciNet  Article  Google Scholar 

  20. 20.

    M. Kamaya, Ultramicroscopy 111, 1189 (2011).

    Article  Google Scholar 

  21. 21.

    W.J. Poole, M.F. Ashby, and N.A. Fleck, Scr. Mater. 34, 559 (1996).

    Article  Google Scholar 

  22. 22.

    K.J. Irvine and F.B. Pickering, J. Iron Steel Inst. 199, 153 (1961).

    Google Scholar 

  23. 23.

    P.I. Williams and R.G. Faulkner, J. Mater. Sci. 22, 3537 (1987).

    Article  Google Scholar 

  24. 24.

    D. Peckner and I.M Bernstein, Handbook of stainless steels (New York: McGraw-Hill, 1977).

    Google Scholar 

  25. 25.

    B. Boyce, P. Reu, and C. Robino, Metall. Mater. Trans. A 37A, 2481 (2006).

    Article  Google Scholar 

Download references


T.R.S. gratefully acknowledges support from the Campus Executive Fellowship from Sandia National Laboratories. R. Nishimoto is thanked for hardness testing support. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525.

Author information



Corresponding author

Correspondence to Chris San Marchi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, T.R., Sugar, J.D., Schoenung, J.M. et al. Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel. JOM 70, 358–363 (2018).

Download citation