Skip to main content

Advertisement

Log in

Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

  • Toward Resources and Processes Sustainability: Part I
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Saito, T. Deguchi, and H. Yamamoto, AIP Adv. 7, 56204 (2017).

    Article  Google Scholar 

  2. P.-K. Tse, China’s Rare-Earth Industry (Virginia, 2011) https://pubs.usgs.gov/of/2011/1042/of2011-1042.pdf.

  3. J.W. Miller, Molycorp to Suspend Production at California Mine. Wall Str. J. (2015). https://www.wsj.com/articles/molycorp-to-suspend-production-at-california-mine-1440616302.

  4. IMARC, Prefeasibility Report on Rare Earth Magnet Manufacturing Plant (2014).

  5. A. Kumar, Permanent Magnets: Technologies and Global Markets (Bangalore, 2016).

  6. A. Kumar, Permanent Magnets: Technologies and Global Markets (Bangalore, 2017).

  7. M. Humphries, Rare Earth Elements: The Global Supply Chain (2013). https://fas.org/sgp/crs/natsec/R41347.pdf.

  8. Grand-View-Research, Permanent Magnets Market Analysis By Product (Ferrite, Neo (NdFeB), SmCO, Alnico), By Application (Automotive, Electronics, Energy Generation) And Segment Forecasts To 2020 (San Francisco, 2014).

  9. M.A.R. Önal, C.R. Borra, M. Guo, B. Blanpain, and T. Van Gerven, J. Sust. Metall. 1, 199 (2015).

    Article  Google Scholar 

  10. J.H. Rademaker, R. Kleijn, and Y. Yang, Environ. Sci. Technol. 47, 10129 (2013).

    Article  Google Scholar 

  11. T. Xu and H. Peng, J. Rare Earths 27, 1096 (2009).

    Article  Google Scholar 

  12. E. Harris, HR2791 is not the solution or responsible, Inst. Scrap Recycl. Ind. 1 (2013). http://www.isri.org/docs/default-source/policy-regulations/e-sscrap-2013-hr2791-is-not-the-solution-final.pdf?sfvrsn=4.

  13. B. Sprecher, Y. Xiao, A. Walton, J. Speight, R. Harris, R. Kleijn, G. Visser, and G.J. Kramer, Environ. Sci. Technol. 48, 3951 (2014).

    Article  Google Scholar 

  14. R.T. Nguyen, L.A. Diaz, D.D. Imholte, and T.E. Lister, JOM 69, 1546 (2017).

    Article  Google Scholar 

  15. N. Haque, A. Hughes, S. Lim, and C. Vernon, Resources 3, 614 (2014).

    Article  Google Scholar 

  16. TrendFocus, Global shipments of hard disk drives (HDD) from 4th quarter 2010 to 4th quarter 2015 (in millions) (Storage Newsletter Trend Focus, 2016). http://www.statista.com/statistics/275336/global-shipment-figures-for-hard-disk-drives-from-4th-quarter-2010/.

  17. Hitachi Ltd., Hitachi News Releases, Hitachi Develops Recycling Technologies for Rare Earth Metals (2010). http://www.hitachi.com/New/cnews/101206.html.

  18. T. McIntyre, Cost Effective Hard Disk Drive Magnet Recovery and Reuse. Crit. Mater. Annu. Meet. (2016). https://cmi.ameslab.gov/sites/default/files/2016-cmi-annual-mcintyre.pdf.

  19. T. J. McIntyre, WO 2017079183 A1 (2017).

  20. A. Walton, H. Yi, N.A. Rowson, J.D. Speight, V.S.J. Mann, R.S. Sheridan, A. Bradshaw, I.R. Harris, and A.J. Williams, J. Clean. Prod. 104, 236 (2015).

    Article  Google Scholar 

  21. I.R. Harris, J. Speight, A. Walton, and A. Williams, US 20120137829 A1 (2012).

  22. I.R. Harris, J. Speight, A. Walton, and A. Williams, WO 2012101398 A1 (2012).

  23. E. Brancato and I.E.E.E. Electr, Insul. Mag. 7, 14 (1991).

    Article  Google Scholar 

  24. M. Barnes, Practical Variable Speed Drives and Power Electronics (Oxford: Elsevier, 2003).

    Google Scholar 

  25. K. Habib, P.K. Schibye, A.P. Vestbø, O. Dall, and H. Wenzel, Environ. Sci. Technol. 48, 12229 (2014).

    Article  Google Scholar 

  26. US-DOE, Critical Materials Strategy (Washington DC, 2011), https://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf.

  27. US-DOE, Energy.gov, Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials, (2013). https://energy.gov/articles/ames-laboratory-lead-new-research-effort-address-shortages-rare-earth-and-other-critical.

  28. EU-Commission, Innovation partnership to overcome Europe’s raw materials shortages (2012). http://europa.eu/rapid/press-release_MEMO-12-144_en.htm.

  29. US-DOE, The Department of Energy’s Critical Materials Strategy (2017). https://www.energy.gov/epsa/initiatives/department-energy-s-critical-materials-strategy.

  30. USGS, Mineral Commodity Summaries (Viginia, 2017).

  31. USGS, Mineral Commodities Summaries (Virginia, 2015).

  32. N. Maât, V. Nachbaur, R. Lardé, J. Juraszek, J.-M. Le Breton, and A.C.S. Sustain, Chem. Eng. 4, 6455 (2016).

    Google Scholar 

  33. T. Saeki, T. Akahori, Y. Miyamoto, M. Kyoi, M. Okamoto, T.H. Okabe, and Y. Hiroshige, T. Nemoto.Rare Met. Technol., ed. N.R. Neelameggham, S. Alam, H. Oosterhof, A.A. Jha, and S. Wang (Hoboken: Wiley, 2014), pp. 103–106.

    Google Scholar 

  34. V. Zepf, Rare Earth Elements (Berlin: Springer, 2013).

    Book  Google Scholar 

  35. L. Millsaps, New acid-free magnet recycling process (2017). https://phys.org/news/2017-09-acid-free-magnet-recycling.html.

  36. K. Binnemans, in Handb. Phys. Chem. Rare Earths Vol. 35, edited by J. K.A. Gschneidner, J.-C. G. Bünzli, and V. K. Pecharsky (Elsevier B.V., 2005), pp. 107–272.

  37. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod. 51, 1 (2013).

    Article  Google Scholar 

  38. T.W. Ellis, F.A. Schmidt, and L.L. Jones, in Metall. Soc. Conf. High Perform. Compos. (Rosemont, 1994).

  39. T. Vander Hoogerstraete, B. Blanpain, T. Van Gerven, and K. Binnemans, RSC Adv. 4, 64099 (2014).

    Article  Google Scholar 

  40. M.H. Emmert and H.M.D. Bandara, US 20160208364 A1 (2016).

  41. É.A. Perigo, C. Fredericci, T.O. Tsubaki, M.S. Menossi, R.V. Martin, A.L.N. da Silva, F.J.G. Landgraf, and N. de Olivera, WO/2015/089608 (2015).

  42. C.-H. Lee, Y.-J. Chen, C.-H. Liao, S.R. Popuri, S.-L. Tsai, and C.-E. Hung, Metall. Mater. Trans. A 44, 5825 (2013).

    Article  Google Scholar 

  43. H.-S. Yoon, C.-J. Kim, K.W. Chung, S.-J. Lee, A.-R. Joe, Y.-H. Shin, S.-I. Lee, S.-J. Yoo, and J.-G. Kim, Korean J. Chem. Eng. 31, 706 (2014).

    Article  Google Scholar 

  44. P. Koltun and A. Tharumarajah, ISRN Metall. 2014, 1 (2014).

    Article  Google Scholar 

  45. US-EIA, Average Monthly Residential Electricity Consumption, Prices, and Bills by State (Washington, 2017), https://www.eia.gov/electricity/sales_revenue_price/pdf/table5_a.pdf.

  46. Urbanmining, Urbanminingco.com, Magnet-to-Magnet (n.d.) http://urbanminingco.com/index.php?cat=technology.

  47. Y. Yang, A. Walton, R. Sheridan, K. Güth, R. Gauß, O. Gutfleisch, M. Buchert, B.-M. Steenari, T. Van Gerven, P.T. Jones, and K. Binnemans, J. Sustain. Metall. 3, 122 (2017).

    Article  Google Scholar 

  48. H.M.D. Bandara, M.A. Mantell, J.W. Darcy, and M.H. Emmert, Energy Technol. 3, 118 (2015).

    Article  Google Scholar 

  49. M. Zakotnik, E. Devlin, I.R. Harris, and A.J. Williams, J. Iron. Steel Res. Int. 13, 289 (2006).

    Article  Google Scholar 

  50. M. Zakotnik, I.R. Harris, and A.J. Williams, J. Alloys Compd. 450, 525 (2008).

    Article  Google Scholar 

  51. O. Gutfleisch, K. Güth, T.G. Woodcock, and L. Schultz, Adv. Energy Mater. 3, 151 (2013).

    Article  Google Scholar 

  52. C. Li, M. Yue, W. Liu, T. Zuo, X. Yi, J. Chen, Z. Zhou, and Y. Wu, J. Mater. Cycles Waste Manag. 17, 547 (2015).

    Article  Google Scholar 

  53. M. Itoh, M. Masuda, S. Suzuki, and K. Machida, J. Alloys Compd. 374, 393 (2004).

    Article  Google Scholar 

  54. X. Li, M. Yue, W. Liu, and D. Zhang, IEEE Trans. Magn. 51, 1 (2015).

    Google Scholar 

  55. O. Takeda and T.H. Okabe, Metall. Mater. Trans. E 1, 160 (2014).

    Google Scholar 

  56. S.T. Abrahami, Y. Xiao, and Y. Yang, Miner. Process. Extr. Metall. 124, 106 (2015).

    Google Scholar 

  57. Z. Sun, Y. Xiao, H. Agterhuis, J. Sietsma, and Y. Yang, J. Clean. Prod. 112, 2977 (2016).

    Article  Google Scholar 

  58. B.N. Carlson and P.R. Taylor, Appl. Process Eng. Princ. Mater. Process. Energy Environ. Technol. (2017), pp. 293–299.

  59. C. Stanton, Sulfation Roasting and Leaching of Samarium-Cobalt Magnet Swarf for Samarium Recovery (Colorado School of Mines, 2016).

  60. H.M.D. Bandara, K.D. Field, and M.H. Emmert, Green Chem. 18, 753 (2016).

    Article  Google Scholar 

  61. Y. Baba, F. Kubota, N. Kamiya, and M. Goto, J. Chem. Eng. Jpn. 44, 679 (2011).

    Article  Google Scholar 

  62. D. Dupont and K. Binnemans, Green Chem. 17, 2150 (2015).

    Article  Google Scholar 

  63. T. Vander Hoogerstraete, S. Wellens, K. Verachtert, and K. Binnemans, Green Chem. 15, 919 (2013).

    Article  Google Scholar 

  64. A. Rout and K. Binnemans, Dalt. Trans. 43, 3186 (2014).

    Article  Google Scholar 

  65. S. S. Foltova, K. Binnemans, and T. Vander Hoogerstraete, in ERES2017 2nd Eur. Rare Earth Resour. Conf. (Santorini, 2017), pp. 1–3.

  66. R.D. Rogers, K.R. Seddon, and S. Volkov, eds., Green industrial applications of ionic liquids (Netherlands, Dordrecht: Springer, 2002).

    Google Scholar 

  67. T. Itakura, R. Sasai, and H. Itoh, J. Alloys Compd. 408–412, 1382 (2006).

    Article  Google Scholar 

  68. Y. Xu, L.S. Chumbley, and F.C. Laabs, J. Mater. Res. 15, 2296 (2000).

    Article  Google Scholar 

  69. R.T. Ott, R.W. McCallum, and L.L. Jones, US 9725788 B2 (2017).

  70. R.T. Ott and R.W. McCallum, US 20170016088 A1 (2017).

  71. T.W. Ellis and F.A. Schmidt, US 5437709 A (1995).

  72. F.A. Schmidt, D.T. Peterson, J.T. Wheelock, and L.L. Jones, US 5174811 A (1992).

Download references

Acknowledgement

This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. HDD materials shown in figures were supplied from Oak Ridge National Laboratory by Dr. T. McIntyre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Nlebedim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nlebedim, I.C., King, A.H. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling. JOM 70, 115–123 (2018). https://doi.org/10.1007/s11837-017-2698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2698-7

Navigation