Skip to main content
Log in

Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas–Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

  • Technical Communications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of different cell design and operating parameters on the gas–liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode–cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.X. Liu and J. Li, Modern Aluminum Electrolysis (Beijing: Metallurgical Industry Press, 2008), pp. 3–8.

    Google Scholar 

  2. K.E. Einarsrud, I. Eick, W. Bai, Y.Q. Feng, J.S. Hua, and P.J. Witt, Appl. Math. Model. 44, 3 (2017).

    Article  MathSciNet  Google Scholar 

  3. R.G. Aaberg, V. Ranum, and K. Williamson, Light Metals 1997, ed. R. Huglen (Orlando, FL: TMS, 1997), pp. 341–346.

  4. Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, and X.W. Hu, Metall. Mater. Trans. B 47, 1962 (2016).

    Article  Google Scholar 

  5. K. Vekony and L.I. Kiss, Metall. Mater. Trans. B 41, 1006 (2010).

    Article  Google Scholar 

  6. M.A. Cooksey and W. Yang, Light Metals 2006, ed. T.J. Galloway (San Antonio, TX: TMS, 2006), pp. 359–365.

  7. Y.Q. Xue, N.J. Zhou, and S.Z. Bao, Chin. J. Nonferrous Met. 16, 1823 (2006).

    Google Scholar 

  8. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y.S. Morsi, Metall. Mater. Trans. B 44, 1155 (2013).

    Article  Google Scholar 

  9. Y.Q. Feng, M.A. Cooksey, and M.P. Schwarz, Light Metals 2007, ed. M. Sørlie (Orlando, FL: TMS, 2007), pp. 339–344.

  10. Y.Q. Feng, W. Yang, M.A. Cooksey, and M.P. Schwarz, J. Comput. Multiph. Flows 2, 179 (2010).

    Article  Google Scholar 

  11. J. Li, Y.J. Xu, H.L. Zhang, and Y.Q. Lai, Int. J. Multiph. Flow 37, 46 (2011).

    Article  Google Scholar 

  12. S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and Y.W. Zhou, J. Cent. South Univ. Technol. 22, 2482 (2015).

    Article  Google Scholar 

  13. S.Q. Zhan (Ph.D. Dissertation, Central SouthUniversity, Changsha, 2015).

  14. Q. Wang, B.K. Li, and N.X. Feng, Metall. Mater. Trans. B 45, 272 (2014).

    Article  Google Scholar 

  15. Y.Q. Feng, M.P. Schwarz, W. Yang, and M.A. Cooksey, Metall. Mater. Trans. B 46, 1959 (2015).

    Article  Google Scholar 

  16. S.Q. Zhan, J.H. Yang, Z.T. Wang, R.J. Zhao, J. Zheng, and J.F. Wang, JOM 69, 1589 (2017).

    Article  Google Scholar 

  17. S.Q. Zhan, Z.T. Wang, J.H. Yang, R.J. Zhao, C.F. Li, J.F. Wang, and J.M. Zhou, Ind. Eng. Chem. Res. 56, 8649 (2017).

    Article  Google Scholar 

  18. S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu, AIChE J. 54, 1689 (2008).

    Article  Google Scholar 

  19. X.F. Liang, H. Pan, Y.H. Su, and Z.H. Luo, Chem. Eng. Res. Des. 112, 88 (2016).

    Article  Google Scholar 

  20. H. Luo, Ph.D. Dissertation (Norwegian Institute of Technology, Trondheim, 1993).

  21. H. Luo and H.F. Svendsen, AIChE J. 42, 1225 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (51704126), the Natural Science Foundation of Jiangsu Province (BK20170551, BK20171301, BK20150511), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (17KJB450001), the Foundation of Senior Talent of Jiangsu University (2015JDG158), and the China Postdoctoral Science Foundation (2016M591781). Our special thanks are a result of anonymous reviewers for insightful suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, S., Wang, J., Wang, Z. et al. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas–Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells. JOM 70, 229–236 (2018). https://doi.org/10.1007/s11837-017-2636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2636-8

Navigation