Skip to main content
Log in

Transformation Stasis Phenomenon of Bainite Formation in Low-Carbon, Multicomponent Alloyed Steel

  • Characterization of Advanced High Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The transformation stasis phenomenon of bainite formation in low-carbon steel was detected using a high-resolution dilatometer. The phenomenon occurred at different stages for different isothermal temperatures. In combination with microstructural observation, the calculated overall activation energy of transformation and interface migration velocity shed new light on the cause of formation of the stasis phenomenon. The temporary stasis formed at the initial stage of phase transformation for high isothermal temperature was attributed to the drag effect of substitutional atoms, which leads to low-interface migration velocity and large overall activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.F. Hehemann, K.R. Kinsman, and H.I. Aasonson, Metall. Trans. 3, 1077 (1972).

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshi and D.V. Edmonds, Acta Metall. 28, 1265 (1980).

    Article  Google Scholar 

  3. H. Chen and S. Van der Zwaag, JOM 68, 1320 (2016).

    Article  Google Scholar 

  4. W.T. Reynolds, F.Z. Li, C.K. Shui, and H.I. Aaronson, Metall. Trans. A 21A, 1433 (1990).

    Article  Google Scholar 

  5. R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, and H.J. Maier, Acta Mater. 60, 3022 (2012).

    Article  Google Scholar 

  6. T. Furuhara, T. Yamaguchi, G. Miyamoto, and T. Maki, Mater. Sci. Technol. 26, 392 (2010).

    Article  Google Scholar 

  7. L.Y. Lan, C.L. Qiu, H.Y. Song, and D.W. Zhao, Mater. Lett. 125, 86 (2014).

    Article  Google Scholar 

  8. T. Furuhara, K. Tsuzumi, G. Miyamoto, T. Amino, and G. Shigesato, Metall. Mater. Trans. A 45A, 5990 (2014).

    Article  Google Scholar 

  9. Y. Xia, G. Miyamoto, Z.G. Yang, C. Zhang, and T. Furuhara, Acta Mater. 91, 10 (2015).

    Article  Google Scholar 

  10. M. Hillert, L. Hoglund, and J. Agren, Metall. Mater. Trans. A 35A, 3693 (2004).

    Article  Google Scholar 

  11. H. Chen, K.Y. Zhu, L. Zhao, and S. van der Zwaag, Acta Mater. 61, 5458 (2013).

    Article  Google Scholar 

  12. F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C. Garcia de Andres, Acta Mater. 57, 8 (2009).

    Article  Google Scholar 

  13. M. Hillert, A. Borgenstam, and J. Agren, Scr. Mater. 62, 75 (2010).

    Article  Google Scholar 

  14. C. Qiu, H.S. Zurob, and C.R. Hutchinson, Acta Mater. 100, 333 (2015).

    Article  Google Scholar 

  15. J.W. Christian, The Theory of Transformations in Metals and Alloys, 3rd ed. (Oxford: Pergamon Press, 2001), pp. 529–552.

    Google Scholar 

  16. E.J. Mittemeijer, J. Mater. Sci. 27, 3977 (1992).

    Article  Google Scholar 

  17. A. Borgenstam and M. Hillert, Phase Transformations in Steels eds. E. Pereloma and D. Edmonds (Sawston: Woodhead Publishing, 2012), p. 131.

  18. M.K. Kang, M.X. Zhang, F. Liu, and M. Zhu, Acta Metall. Sin. 45, 25 (2009).

    Google Scholar 

  19. G.R. Purdy and M. Hillert, Acta Metall. 32, 823 (1984).

    Article  Google Scholar 

  20. Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer, Acta Mater. 56, 3833 (2008).

    Article  Google Scholar 

  21. M. Enomoto, Metal. Mater. Trans. A. 25A, 1947 (1994).

    Article  Google Scholar 

  22. A. Borgenstam and M. Hillert, Acta Mater. 45, 651 (1997).

    Article  Google Scholar 

  23. C. Gupta, G.K. Dey, J.K. Chakravartty, D. Srivastav, and S. Banerjee, Scr. Mater. 53, 559 (2005).

    Article  Google Scholar 

  24. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Acta Mater. 105, 155 (2016).

    Article  Google Scholar 

  25. D. Quidort and Y.J.M. Brechet, ISIJ Int. 42, 1010 (2002).

    Article  Google Scholar 

  26. E. Kozeschnik and E. Gamsjager, Metall. Mater. Trans. A 37A, 1791 (2006).

    Article  Google Scholar 

  27. M. Hillert, Metall. Trans. A 6A, 5 (1975).

    Article  Google Scholar 

  28. G. Purdy, J. Agren, A. Borgenstam, Y. Brechet, M. Enomoto, T. Furuhara, E. Gamsjager, M. Goune, M. Hillert, C. Hutchinson, M. Militzer, and H. Zurob, Metall. Mater. Trans. A 42A, 3703 (2011).

    Article  Google Scholar 

  29. A.T.W. Kempen, F. Sommer, and E.J. Mittenmeijer, Acta Mater. 50, 3545 (2002).

    Article  Google Scholar 

  30. J. Sietsma and S. van der Zwaag, Acta Mater. 52, 4143 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51605084 and 51641503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyun Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, L., Kong, X. Transformation Stasis Phenomenon of Bainite Formation in Low-Carbon, Multicomponent Alloyed Steel. JOM 70, 666–671 (2018). https://doi.org/10.1007/s11837-017-2633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2633-y

Navigation