Skip to main content
Log in

A Rate-Theory–Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.S. Kim, G.L. Hofman, and J.S. Cheon, J. Nucl. Mater. 436, 14 (2013).

    Article  Google Scholar 

  2. J. Spino, D. Baron, M. Coquerelle, and A.D. Stalios, J. Nucl. Mater. 256, 189 (1998).

    Article  Google Scholar 

  3. K. Nogita and K. Une, Nucl. Instrum. Methods B 91, 301 (1994).

    Article  Google Scholar 

  4. J. Gan, D.D. Keiser, B.D. Miller, A.B. Robinson, J.F. Jue, P. Medvedev, and D.M. Wachs, J. Nucl. Mater. 424, 43 (2012).

    Article  Google Scholar 

  5. Y.S. Kim and G.L. Hofman, J. Nucl. Mater. 419, 291 (2011).

    Article  Google Scholar 

  6. M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, and Y.S. Kim, Nucl. Eng. Technol. 46, 169 (2014).

    Article  Google Scholar 

  7. G. Moore, AFIP-2 Fabrication Summary Report (INL/EXT-08-14871, 2010).

  8. D.E. Burkes, A.M. Casella, E.C. Buck, A.J. Casella, M.K. Edwards, P.J. MacFarlan, K.N. Pool, B.D. Slonecker, F.N. Smith, F.H. Steen, and R.E. Thornhill, Fuel Thermo-physical Characterization Project, Fiscal Year 2013 Final Report (PNNL-22981, 2013).

  9. S. Kashibe, K. Une, and K. Nogita, J. Nucl. Mater. 206, 22 (1993).

    Article  Google Scholar 

  10. L.E. Thomas, C.E. Beyer, and L.A. Charlot, J. Nucl. Mater. 188, 80 (1992).

    Article  Google Scholar 

  11. M. Kinoshita, J. Nucl. Mater. 248, 185 (1997).

    Article  Google Scholar 

  12. H. Matzke, J. Nucl. Mater. 189, 141 (1992).

    Article  Google Scholar 

  13. J. Rest, J. Nucl. Mater. 326, 175 (2004).

    Article  Google Scholar 

  14. C.B. Lee and Y.H. Jung, J. Nucl. Mater. 279, 207 (2000).

    Article  Google Scholar 

  15. J. Rest, J. Nucl. Mater. 346, 226 (2005).

    Article  Google Scholar 

  16. J. Spino, K. Vennix, and M. Coquerelle, J. Nucl. Mater. 231, 179 (1996).

    Article  Google Scholar 

  17. M.V. Speight, Nucl. Sci. Eng. 37, 180 (1969).

    Article  Google Scholar 

  18. S.Y. Hu, W. Setyawan, V.V. Joshi, and C.A. Lavender, J. Nucl. Mater. 490, 49 (2017).

    Article  Google Scholar 

  19. L.Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  20. Y.L. Li, S.Y. Hu, X. Sun, and M. Stan, NPJ Comput. Mater. 3, 16 (2017).

    Article  Google Scholar 

  21. S.Y. Hu, D. Burkes, C.A. Lavender, and V. Joshi, J. Nucl. Mater. 480, 323 (2016).

    Article  Google Scholar 

  22. S.Y. Hu, C.H. Henager, H.L. Heinisch, M. Stan, M.I. Baskes, and S.M. Valone, J. Nucl. Mater. 392, 292 (2009).

    Article  Google Scholar 

  23. N. Moelans, B. Blanpain, and P. Wollants, Phys. Rev. B 78, 024113 (2008).

    Article  Google Scholar 

  24. N.M. Ghoniem and D. Walgraef, Model. Simul. Mater. Sci. Eng. 1, 569 (1993).

    Article  Google Scholar 

  25. T. Opplestrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos, and B. Sadigh, Phys. Rev. Lett. 97, 230602 (2006).

    Article  Google Scholar 

  26. S.Y. Hu and C.H. Henager, J. Nucl. Mater. 394, 155 (2009).

    Article  Google Scholar 

  27. S.Y. Hu, D.E. Burkes, C.A. Lavender, D.J. Senor, W. Setyawan, and Z.J. Xu, J. Nucl. Mater. 479, 202 (2016).

    Article  Google Scholar 

  28. L. Liang, Z.G. Mei, Y.S. Kim, B. Ye, G. Hofman, M. Anitescu, and A.M. Yacout, Comput. Mater. Sci. 124, 228 (2016).

    Article  Google Scholar 

  29. A. El-Azab, K. Ahmed, S. Rokkam, and T. Hochrainer, Curr. Opin. Solid State Mater. Sci. 18, 90 (2014).

    Article  Google Scholar 

  30. A.A. Semenov and C.H. Woo, J. Nucl. Mater. 454, 60 (2014).

    Article  Google Scholar 

  31. S. Rokkam, A. El-Azab, P. Millett, and D. Wolf, Model. Simul. Mater. Sci. Eng. 17, 064002 (2009).

    Article  Google Scholar 

  32. P.C. Millett, A. El-Azab, S. Rokkam, M. Tonks, and D. Wolf, Comput. Mater. Sci. 50, 949 (2011).

    Article  Google Scholar 

  33. C.E. Krill and L.Q. Chen, Acta Mater. 50, 3057 (2002).

    Google Scholar 

  34. G.L. Hofman, J. Truffert, and J.M. Dupouy, J. Nucl. Mater. 65, 200 (1977).

    Article  Google Scholar 

  35. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004).

    Google Scholar 

  36. S.Y. Hu, V. Vineet, C.A. Lavendar, N.J. Lombardo, J. Wight, B. Ye, Z.G. Mei, L. Liang, M.Y. Abdellatif, G. Hofman, Y.F. Zhang, B. Beeler, X.M. Bai, J. Cole, and B. Rabin, Microstructural Level Fuel Performance Modeling of UMo Monolithic Fuel (Idaho Falls: Idaho National Laboratory, 2016).

    Google Scholar 

  37. A. Hishinuma and L.K. Mansur, J. Nucl. Mater. 118, 91 (1983).

    Article  Google Scholar 

  38. J. Rest, J. Nucl. Mater. 207, 192 (1993).

    Article  Google Scholar 

  39. V.I. Dubinko, J. Nucl. Mater. 206, 1 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this article was performed by Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. This study was supported by the U.S. Department of Energy, National Nuclear Security Administration Office of Material Management and Minimization Reactor Conversion Program. Dr. Hu would like to thank Nicholas Lombardo at PNNL for the comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenyang Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Joshi, V. & Lavender, C.A. A Rate-Theory–Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels. JOM 69, 2554–2562 (2017). https://doi.org/10.1007/s11837-017-2611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2611-4

Navigation