Skip to main content

Advertisement

Log in

Antibacterial Titanium Produced Using Selective Laser Melting

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, and C. Potrich, J. Mech. Behav. Biomed. Mater. 71, 295 (2017).

    Article  Google Scholar 

  2. L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, and J.S.C. Jang, Mater. Sci. Eng. A 682, 389 (2017).

    Article  Google Scholar 

  3. S.Y. Chen, J.C. Huang, C.T. Pan, C.H. Lin, T.L. Yang, Y.S. Huang, C.H. Ou, L.Y. Chen, D.Y. Lin, H.K. Lin, T.H. Li, J.S.C. Jang, and C.C. Yang, J. Alloys Compd. 713, 248 (2017).

    Article  Google Scholar 

  4. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Mater. Des. 86, 545 (2015).

    Article  Google Scholar 

  5. S.L. Lu, M. Qian, H.P. Tang, M. Yan, J. Wang, and D.H. StJohn, Acta Mater. 104, 303 (2016).

    Article  Google Scholar 

  6. E. Tiferet, O. Rivin, M. Ganor, H. Ettedgui, O. Ozeri, E.N. Caspi, and O. Yeheskel, Addit. Manuf. 10, 43 (2016).

    Article  Google Scholar 

  7. J. Yang, H. Yu, Z. Wang, and X. Zeng, Mater. Charact. 127, 137 (2017).

    Article  Google Scholar 

  8. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Mater. Des. 108, 308 (2016).

    Article  Google Scholar 

  9. B. Zhao, H. Wang, N. Qiao, C. Wang, and M. Hu, Mater. Sci. Eng. C 70, 832 (2017).

    Article  Google Scholar 

  10. X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, and L.E. Murr, Mater. Des. 95, 21 (2016).

    Article  Google Scholar 

  11. V.J. Challis, X. Xu, L.C. Zhang, A.P. Roberts, J.F. Grotowski, and T.B. Sercombe, Mater. Des. 63, 783 (2014).

    Article  Google Scholar 

  12. E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Mater. Charact. 62, 488 (2011).

    Article  Google Scholar 

  13. E. Łyczkowska, P. Szymczyk, B. Dybała, and E. Chlebus, ACME 14, 586 (2014).

    Google Scholar 

  14. T. Sercombe, N. Jones, R. Day, and A. Kop, Rapid Prototyp. J. 14, 300 (2008).

    Article  Google Scholar 

  15. H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bönisch, A.S. Volegov, M. Calin, J. Eckert, and M.S. Dargusch, Mater. Sci. Eng. A 688, 20 (2017).

    Article  Google Scholar 

  16. H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, and J. Eckert, Mater. Sci. Eng. A 625, 350 (2015).

    Article  Google Scholar 

  17. N. Kang, H. Yuan, P. Coddet, Z. Ren, C. Bernage, H. Liao, and C. Coddet, Mater. Sci. Eng. C 70, 405 (2017).

    Article  Google Scholar 

  18. X.P. Li, J. Van Humbeeck, and J.P. Kruth, Mater. Des. 116, 352 (2017).

    Article  Google Scholar 

  19. B. Zhang, H. Liao, and C. Coddet, Appl. Surf. Sci. 279, 310 (2013).

    Article  Google Scholar 

  20. Y. Liu, S. Li, W. Hou, S. Wang, Y. Hao, R. Yang, T.B. Sercombe, and L.-C. Zhang, J. Mater. Sci. Technol. 32, 505 (2016).

    Article  Google Scholar 

  21. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Acta Mater. 113, 56 (2016).

    Article  Google Scholar 

  22. Y.J. Liu, X.P. Li, L.C. Zhang, and T.B. Sercombe, Mater. Sci. Eng. A 642, 268 (2015).

    Article  Google Scholar 

  23. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Scripta Mater. 65, 21 (2011).

    Article  Google Scholar 

  24. D. Campoccia, L. Montanaro, and C.R. Arciola, Biomaterials 27, 2331 (2006).

    Article  Google Scholar 

  25. M. Chen, E. Zhang, and L. Zhang, Mater. Sci. Eng. C 62, 350 (2016).

    Article  Google Scholar 

  26. Z. Ma, M. Li, and R. Liu, J. Mater. Sci. Mater. Med. 27, 91 (2016).

    Article  Google Scholar 

  27. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Article  Google Scholar 

  28. W. Zimmerli, A. Trampuz, P.E. Ochsner, and N. Engl, J. Med. 351, 1645 (2004).

    Google Scholar 

  29. W.H. Harris, C.B. Sledge, and N. Engl, J. Med. 323, 725 (1990).

    Google Scholar 

  30. R.O. Darouiche and N. Engl, J. Med. 350, 1422 (2004).

    Google Scholar 

  31. S. Sivolella, E. Stellini, G. Brunello, C. Gardin, L. Ferroni, E.R. Bressan, and B. Zavan, J. Nanomater. 2012, 1 (2012).

    Article  Google Scholar 

  32. Z. Ma, M. Yao, R. Liu, L. Ren, K. Yang, Y. Zhang, Z. Liao, W. Liu, and M. Qi, Mater. Technol. Adv. Biomater. 2, B80 (2015).

    Google Scholar 

  33. L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, and K. Yang, J. Mater. Sci. Technol. 30, 699 (2014).

    Article  Google Scholar 

  34. K.-H. Liao, K.-L. Ou, H.-C. Cheng, C.-T. Lin, and P.-W. Peng, Appl. Surf. Sci. 256, 3642 (2010).

    Article  Google Scholar 

  35. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M. Qian, JOM 67, 688 (2015).

    Article  Google Scholar 

  36. Q. Wang, L. Ren, X. Li, S. Zhang, T.B. Sercombe, and K. Yang, Mater. Sci. Eng. C 68, 519 (2016).

    Article  Google Scholar 

  37. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and T. Okabe, Dent. Mater. 19, 174 (2003).

    Article  Google Scholar 

  38. T. Aoki, I.C.I. Okafor, I. Watanabe, M. Hattori, Y. Oda, and T. Okabe, J. Oral Rehabil. 31, 1109 (2004).

    Article  Google Scholar 

  39. X. Yao, Q.Y. Sun, L. Xiao, and J. Sun, J. Alloys Compd. 484, 196 (2009).

    Article  Google Scholar 

  40. T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen, and K. Tomita, J. Biomed. Mater. Res. Part B 91B, 373 (2009).

    Article  Google Scholar 

  41. M. Chen, E. Zhang, and L. Zhang, Mater. Sci. Eng. C 62, 350 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council’s Discovery Projects funding scheme (Project Number DP110101653). The assistance of Dr. Gordon Wu in the SEM analysis is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Sercombe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macpherson, A., Li, X., McCormick, P. et al. Antibacterial Titanium Produced Using Selective Laser Melting. JOM 69, 2719–2724 (2017). https://doi.org/10.1007/s11837-017-2589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2589-y

Navigation