Abstract
Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.




References
M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, and C. Potrich, J. Mech. Behav. Biomed. Mater. 71, 295 (2017).
L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, and J.S.C. Jang, Mater. Sci. Eng. A 682, 389 (2017).
S.Y. Chen, J.C. Huang, C.T. Pan, C.H. Lin, T.L. Yang, Y.S. Huang, C.H. Ou, L.Y. Chen, D.Y. Lin, H.K. Lin, T.H. Li, J.S.C. Jang, and C.C. Yang, J. Alloys Compd. 713, 248 (2017).
H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Mater. Des. 86, 545 (2015).
S.L. Lu, M. Qian, H.P. Tang, M. Yan, J. Wang, and D.H. StJohn, Acta Mater. 104, 303 (2016).
E. Tiferet, O. Rivin, M. Ganor, H. Ettedgui, O. Ozeri, E.N. Caspi, and O. Yeheskel, Addit. Manuf. 10, 43 (2016).
J. Yang, H. Yu, Z. Wang, and X. Zeng, Mater. Charact. 127, 137 (2017).
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Mater. Des. 108, 308 (2016).
B. Zhao, H. Wang, N. Qiao, C. Wang, and M. Hu, Mater. Sci. Eng. C 70, 832 (2017).
X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, and L.E. Murr, Mater. Des. 95, 21 (2016).
V.J. Challis, X. Xu, L.C. Zhang, A.P. Roberts, J.F. Grotowski, and T.B. Sercombe, Mater. Des. 63, 783 (2014).
E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Mater. Charact. 62, 488 (2011).
E. Łyczkowska, P. Szymczyk, B. Dybała, and E. Chlebus, ACME 14, 586 (2014).
T. Sercombe, N. Jones, R. Day, and A. Kop, Rapid Prototyp. J. 14, 300 (2008).
H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bönisch, A.S. Volegov, M. Calin, J. Eckert, and M.S. Dargusch, Mater. Sci. Eng. A 688, 20 (2017).
H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, and J. Eckert, Mater. Sci. Eng. A 625, 350 (2015).
N. Kang, H. Yuan, P. Coddet, Z. Ren, C. Bernage, H. Liao, and C. Coddet, Mater. Sci. Eng. C 70, 405 (2017).
X.P. Li, J. Van Humbeeck, and J.P. Kruth, Mater. Des. 116, 352 (2017).
B. Zhang, H. Liao, and C. Coddet, Appl. Surf. Sci. 279, 310 (2013).
Y. Liu, S. Li, W. Hou, S. Wang, Y. Hao, R. Yang, T.B. Sercombe, and L.-C. Zhang, J. Mater. Sci. Technol. 32, 505 (2016).
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Acta Mater. 113, 56 (2016).
Y.J. Liu, X.P. Li, L.C. Zhang, and T.B. Sercombe, Mater. Sci. Eng. A 642, 268 (2015).
L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Scripta Mater. 65, 21 (2011).
D. Campoccia, L. Montanaro, and C.R. Arciola, Biomaterials 27, 2331 (2006).
M. Chen, E. Zhang, and L. Zhang, Mater. Sci. Eng. C 62, 350 (2016).
Z. Ma, M. Li, and R. Liu, J. Mater. Sci. Mater. Med. 27, 91 (2016).
M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).
W. Zimmerli, A. Trampuz, P.E. Ochsner, and N. Engl, J. Med. 351, 1645 (2004).
W.H. Harris, C.B. Sledge, and N. Engl, J. Med. 323, 725 (1990).
R.O. Darouiche and N. Engl, J. Med. 350, 1422 (2004).
S. Sivolella, E. Stellini, G. Brunello, C. Gardin, L. Ferroni, E.R. Bressan, and B. Zavan, J. Nanomater. 2012, 1 (2012).
Z. Ma, M. Yao, R. Liu, L. Ren, K. Yang, Y. Zhang, Z. Liao, W. Liu, and M. Qi, Mater. Technol. Adv. Biomater. 2, B80 (2015).
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, and K. Yang, J. Mater. Sci. Technol. 30, 699 (2014).
K.-H. Liao, K.-L. Ou, H.-C. Cheng, C.-T. Lin, and P.-W. Peng, Appl. Surf. Sci. 256, 3642 (2010).
W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M. Qian, JOM 67, 688 (2015).
Q. Wang, L. Ren, X. Li, S. Zhang, T.B. Sercombe, and K. Yang, Mater. Sci. Eng. C 68, 519 (2016).
M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and T. Okabe, Dent. Mater. 19, 174 (2003).
T. Aoki, I.C.I. Okafor, I. Watanabe, M. Hattori, Y. Oda, and T. Okabe, J. Oral Rehabil. 31, 1109 (2004).
X. Yao, Q.Y. Sun, L. Xiao, and J. Sun, J. Alloys Compd. 484, 196 (2009).
T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen, and K. Tomita, J. Biomed. Mater. Res. Part B 91B, 373 (2009).
M. Chen, E. Zhang, and L. Zhang, Mater. Sci. Eng. C 62, 350 (2016).
Acknowledgements
This work was supported by Australian Research Council’s Discovery Projects funding scheme (Project Number DP110101653). The assistance of Dr. Gordon Wu in the SEM analysis is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Macpherson, A., Li, X., McCormick, P. et al. Antibacterial Titanium Produced Using Selective Laser Melting. JOM 69, 2719–2724 (2017). https://doi.org/10.1007/s11837-017-2589-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-017-2589-y