Skip to main content
Log in

Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Sohn, Y. Jung, Y. Xie, C. Osuji, J. Schroers, and J.J. Cha, Nat. Commun. 6, 8157 (2015).

    Article  Google Scholar 

  2. D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, and F.M. Ross, Nature 531, 317 (2016).

    Article  Google Scholar 

  3. J. Baumgartner, A. Dey, P.H. Bomans, C. Le Coadou, P. Fratzl, N.A. Sommerdijk, and D. Faivre, Nat. Mater. 12, 310 (2013).

    Article  Google Scholar 

  4. Y.U. Gong, C.E. Killian, I.C. Olson, N.P. Appathurai, A.L. Amasino, M.C. Martin, L.J. Holt, F.H. Wilt, and P. Gilbert, Proc. Natl. Acad. Sci. U.S.A. 109, 6088 (2012).

    Article  Google Scholar 

  5. R.L. Penn and J.F. Banfield, Science 281, 969 (1998).

    Article  Google Scholar 

  6. W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, and P.M. Frederik, Nat. Commun. 4, 1507 (2013).

    Article  Google Scholar 

  7. K.-S. Cho, D.V. Talapin, W. Gaschler, and C.B. Murray, J. Am. Chem. Soc. 127, 7140 (2005).

    Article  Google Scholar 

  8. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, and M. Mavrikakis, Science 343, 1339 (2014).

    Article  Google Scholar 

  9. B.L. Mehdi, M. Gu, L.R. Parent, W. Xu, E.N. Nasybulin, X. Chen, R.R. Unocic, P. Xu, D.A. Welch, and P. Abellan, Microsc. Microanal. 20, 484 (2014).

    Article  Google Scholar 

  10. M.A. van Huis, N.P. Young, G. Pandraud, J.F. Creemer, D. Vanmaekelbergh, A.I. Kirkland, and H.W. Zandbergen, Adv. Mater. 21, 4992 (2009).

    Article  Google Scholar 

  11. E. Lewis, T. Slater, E. Prestat, A. Macedo, P. O’Brien, P. Camargo, and S. Haigh, Nanoscale 6, 13598 (2014).

    Article  Google Scholar 

  12. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, and Z. Li, Nat. Mater. 16, 101 (2017).

    Article  Google Scholar 

  13. J. De Yoreo, Nat. Mater. 12, 284 (2013).

    Article  Google Scholar 

  14. J.J. De Yoreo, P.U. Gilbert, N.A. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, and J.F. Banfield, Science 349, aaa6760 (2015).

    Article  Google Scholar 

  15. A. Dey, P.H. Bomans, F.A. Müller, J. Will, P.M. Frederik, G. de With, and N.A. Sommerdijk, Nat. Mater. 9, 1010 (2010).

    Article  Google Scholar 

  16. U. Anand, J. Lu, D. Loh, Z. Aabdin, and U. Mirsaidov, Nano Lett. 16, 786 (2016).

    Article  Google Scholar 

  17. L. Fei, S.M. Ng, W. Lu, M. Xu, L. Shu, W.-B. Zhang, Z. Yong, T. Sun, C.H. Lam, and C.W. Leung, Nano Lett. 16, 7875 (2016).

    Article  Google Scholar 

  18. R. Busch, J. Schroers, and W. Wang, MRS Bull. 32, 620 (2007).

    Article  Google Scholar 

  19. R. Busch, JOM 52, 39 (2000).

    Article  Google Scholar 

  20. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  21. D. Curry and J. Knott, Met. Sci. 10, 1 (1976).

    Article  Google Scholar 

  22. G. Kumar, A. Desai, and J. Schroers, Adv. Mater. 23, 461 (2011).

    Article  Google Scholar 

  23. G. Kumar, H.X. Tang, and J. Schroers, Nature 457, 868 (2009).

    Article  Google Scholar 

  24. B.A. Legg, J. Schroers, and R. Busch, Acta Mater. 55, 1109 (2007).

    Article  Google Scholar 

  25. M.A. van Huis, L.T. Kunneman, K. Overgaag, Q. Xu, G. Pandraud, H.W. Zandbergen, and D. Vanmaekelbergh, Nano Lett. 8, 3959 (2008).

    Article  Google Scholar 

  26. J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, and R.L. Penn, Science 289, 751 (2000).

    Article  Google Scholar 

  27. J. Lee, J. Yang, S.G. Kwon, and T. Hyeon, Nat. Rev. Mater. 1, 16034 (2016).

    Article  Google Scholar 

  28. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, and A.P. Alivisatos, Science 336, 61 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Cha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 2767 kb)

Supplementary material 2 (AVI 6921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Sohn, S., Schroers, J. et al. Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses. JOM 69, 2187–2191 (2017). https://doi.org/10.1007/s11837-017-2579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2579-0

Navigation