JOM

, Volume 69, Issue 11, pp 2187–2191 | Cite as

Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses

Article
  • 258 Downloads

Abstract

Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.

Supplementary material

11837_2017_2579_MOESM1_ESM.avi (2.7 mb)
Supplementary material 1 (AVI 2767 kb)
11837_2017_2579_MOESM2_ESM.avi (6.8 mb)
Supplementary material 2 (AVI 6921 kb)

References

  1. 1.
    S. Sohn, Y. Jung, Y. Xie, C. Osuji, J. Schroers, and J.J. Cha, Nat. Commun. 6, 8157 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, and F.M. Ross, Nature 531, 317 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Baumgartner, A. Dey, P.H. Bomans, C. Le Coadou, P. Fratzl, N.A. Sommerdijk, and D. Faivre, Nat. Mater. 12, 310 (2013).CrossRefGoogle Scholar
  4. 4.
    Y.U. Gong, C.E. Killian, I.C. Olson, N.P. Appathurai, A.L. Amasino, M.C. Martin, L.J. Holt, F.H. Wilt, and P. Gilbert, Proc. Natl. Acad. Sci. U.S.A. 109, 6088 (2012).CrossRefGoogle Scholar
  5. 5.
    R.L. Penn and J.F. Banfield, Science 281, 969 (1998).CrossRefGoogle Scholar
  6. 6.
    W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, and P.M. Frederik, Nat. Commun. 4, 1507 (2013).CrossRefGoogle Scholar
  7. 7.
    K.-S. Cho, D.V. Talapin, W. Gaschler, and C.B. Murray, J. Am. Chem. Soc. 127, 7140 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, and M. Mavrikakis, Science 343, 1339 (2014).CrossRefGoogle Scholar
  9. 9.
    B.L. Mehdi, M. Gu, L.R. Parent, W. Xu, E.N. Nasybulin, X. Chen, R.R. Unocic, P. Xu, D.A. Welch, and P. Abellan, Microsc. Microanal. 20, 484 (2014).CrossRefGoogle Scholar
  10. 10.
    M.A. van Huis, N.P. Young, G. Pandraud, J.F. Creemer, D. Vanmaekelbergh, A.I. Kirkland, and H.W. Zandbergen, Adv. Mater. 21, 4992 (2009).CrossRefGoogle Scholar
  11. 11.
    E. Lewis, T. Slater, E. Prestat, A. Macedo, P. O’Brien, P. Camargo, and S. Haigh, Nanoscale 6, 13598 (2014).CrossRefGoogle Scholar
  12. 12.
    Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, and Z. Li, Nat. Mater. 16, 101 (2017).CrossRefGoogle Scholar
  13. 13.
    J. De Yoreo, Nat. Mater. 12, 284 (2013).CrossRefGoogle Scholar
  14. 14.
    J.J. De Yoreo, P.U. Gilbert, N.A. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, and J.F. Banfield, Science 349, aaa6760 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Dey, P.H. Bomans, F.A. Müller, J. Will, P.M. Frederik, G. de With, and N.A. Sommerdijk, Nat. Mater. 9, 1010 (2010).CrossRefGoogle Scholar
  16. 16.
    U. Anand, J. Lu, D. Loh, Z. Aabdin, and U. Mirsaidov, Nano Lett. 16, 786 (2016).CrossRefGoogle Scholar
  17. 17.
    L. Fei, S.M. Ng, W. Lu, M. Xu, L. Shu, W.-B. Zhang, Z. Yong, T. Sun, C.H. Lam, and C.W. Leung, Nano Lett. 16, 7875 (2016).CrossRefGoogle Scholar
  18. 18.
    R. Busch, J. Schroers, and W. Wang, MRS Bull. 32, 620 (2007).CrossRefGoogle Scholar
  19. 19.
    R. Busch, JOM 52, 39 (2000).CrossRefGoogle Scholar
  20. 20.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
  21. 21.
    D. Curry and J. Knott, Met. Sci. 10, 1 (1976).CrossRefGoogle Scholar
  22. 22.
    G. Kumar, A. Desai, and J. Schroers, Adv. Mater. 23, 461 (2011).CrossRefGoogle Scholar
  23. 23.
    G. Kumar, H.X. Tang, and J. Schroers, Nature 457, 868 (2009).CrossRefGoogle Scholar
  24. 24.
    B.A. Legg, J. Schroers, and R. Busch, Acta Mater. 55, 1109 (2007).CrossRefGoogle Scholar
  25. 25.
    M.A. van Huis, L.T. Kunneman, K. Overgaag, Q. Xu, G. Pandraud, H.W. Zandbergen, and D. Vanmaekelbergh, Nano Lett. 8, 3959 (2008).CrossRefGoogle Scholar
  26. 26.
    J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, and R.L. Penn, Science 289, 751 (2000).CrossRefGoogle Scholar
  27. 27.
    J. Lee, J. Yang, S.G. Kwon, and T. Hyeon, Nat. Rev. Mater. 1, 16034 (2016).CrossRefGoogle Scholar
  28. 28.
    J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, and A.P. Alivisatos, Science 336, 61 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenUSA
  2. 2.Energy Sciences InstituteWest HavenUSA
  3. 3.Center for Research on Interface Structures and PhenomenaYale UniversityNew HavenUSA

Personalised recommendations