Skip to main content
Log in

Introduction of Electrostatically Charged Particles into Metal Melts

  • Published:
JOM Aims and scope Submit manuscript

Abstract

One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Vorozhtsov, V. Kolarik, V. Promakhov, I. Zhukov, A. Vorozhtsov, and V. Kuchenreuther-Hummel, JOM 68, 1312 (2016).

    Article  Google Scholar 

  2. S. Vorozhtsov, D. Eskin, A. Vorozhtsov, and S. Kulkov, Light Metals 2014 (Warrendale: TMS, 2014), p. 1373.

    Google Scholar 

  3. S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Mater. Trans. A 46A, 2870 (2015).

    Article  Google Scholar 

  4. M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Eng. Sci. Technol. Int. J 19, 463 (2016).

    Article  Google Scholar 

  5. Y. Yang and X. Li, J. Eng. Ind. 129, 497 (2007).

    Google Scholar 

  6. O. Kudryashova and S. Vorozhtsov, JOM 68, 1307 (2016).

    Article  Google Scholar 

  7. O.B. Kudryashova, A.V. Kozyrev, and S.A. Vorozhtsov, Russ. Phys. J. 59, 626 (2016).

    Article  Google Scholar 

  8. G.I. Eskin and D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts (London: CRC Press, 2014).

    Book  Google Scholar 

  9. S. Vorozhtsov, O. Kudryashova, V. Promakhov, V. Dammer, and A. Vorozhtsov, JOM 68, 3094 (2016).

    Article  Google Scholar 

  10. C. Vivès, JOM-e 50, 2 (1998).

    Article  Google Scholar 

  11. E.G. Konovalov and I.K. Germanovich, Dokl. Akad. Nauk Belorus. SSR 6, 492 (1962).

    Google Scholar 

  12. YuP Rozin, V.S. Tikhonova, and M.N. Kostucheck, Ukr. J. Phys. 20, 214 (1975).

    Google Scholar 

  13. T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Compos. A 38, 771 (2007).

    Article  Google Scholar 

  14. S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Mater. Trans. A 46A, 2870 (2015).

    Article  Google Scholar 

  15. P.P. Prokhorenko, N.V. Dezhkunov, and G.E. Konovalov, Ultrasonic Capillary Effect (Minsk: Nauka i Tekhnika, 1981).

    Google Scholar 

  16. P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  Google Scholar 

  17. L. Rozenberg, High-intensity Ultrasonic Fields (New York: Plenum Press, 1971).

    Book  Google Scholar 

  18. S. Vorozhtsov, I. Zhukov, A. Vorozhtsov, A. Zhukov, D. Eskin, and A. Kvetinskaya, Adv. Mater. Sci. Eng. (2015). doi:10.1155/2015/718207.

    Google Scholar 

  19. I. Tzanakis, W.W. Xu, D.G. Eskin, P.D. Lee, and N. Kotsovinos, Ultrason. Sonochem. 27, 72 (2015).

    Article  Google Scholar 

  20. E. Saiz, A. P. Tomsia, and K. Suganuma Wetting and Strength Issues at Al/α-Alumina Interfaces. https://www.osti.gov/scitech/servlets/purl/827082. Accessed 8 Sept 2017.

  21. G.I. Eskin, Technol. Legk. Spl. 11, 21 (1974).

    Google Scholar 

Download references

Acknowledgements

The research was funded by a grant from the Russian Science Foundation (Project No. 17-13-01252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kudryashova.

Additional information

Sergey Vorozhtsov—deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, O., Vorozhtsov, S., Stepkina, M. et al. Introduction of Electrostatically Charged Particles into Metal Melts. JOM 69, 2524–2528 (2017). https://doi.org/10.1007/s11837-017-2567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2567-4

Navigation