, Volume 69, Issue 11, pp 2412–2417 | Cite as

Thermal Conductivity of Compounds Present in the Side Ledge in Aluminium Electrolysis Cells

  • Aïmen E. Gheribi
  • Patrice Chartrand


This paper presents a database for the temperature-dependent thermal conductivity of compounds potentially present in the side ledge formed in aluminium electrolysis cells, between the molten electrolyte used to dissolve the alumina and the side wall. The database is given in the form of an analytical model with sets of parameters for each compound. To determine the model parameters, we considered a robust optimisation approach based on reliable models derived from fundamental physics. Where data are missing, first-principles calculations are utilized to estimate the parameters directly. For all compounds for which data are available, the model’s predictions are found to be in very good agreement with reported experimental data.



This research was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan. Computations were carried out on supercomputers managed by Calcul-Québec and Compute Canada.


  1. 1.
    W.E. Haupin, JOM 23, 41 (2015).CrossRefGoogle Scholar
  2. 2.
    G. Totten and D. MacKenzie, Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing. Handbook of Aluminum (Boca Raton: CRC Press, 2003).Google Scholar
  3. 3.
    D.T. Morelli and G.A. Slack, High Thermal Conductivity Materials (New York: Springer, 2006).Google Scholar
  4. 4.
    A.E. Gheribi and P. Chartrand, Calphad 39, 70 (2012).CrossRefGoogle Scholar
  5. 5.
    A.E. Gheribi, S. Poncsák, R. St-Pierre, L.I. Kiss, and P. Chartrand, J. Chem. Phys. 141, 104508 (2014).CrossRefGoogle Scholar
  6. 6.
    A.E. Gheribi, M. Salanne, and P. Chartrand, J. Chem. Phys. 142, 124109 (2015).CrossRefGoogle Scholar
  7. 7.
    A.E. Gheribi, A. Seifitokaldani, P. Wu, and P. Chartrand, J. Appl. Phys. 118, 145101 (2015).CrossRefGoogle Scholar
  8. 8.
    A.E. Gheribi and P. Chartrand, J. Am. Ceram. Soc. 98, 888 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Seifitokaldani and A.E. Gheribi, Comput. Mater. Sci. 108(Part A), 17 (2015).Google Scholar
  10. 10.
    A. Seifitokaldani, A.E. Gheribi, M. Doll, and P. Chartrand, J. Alloys Compd. 662, 240 (2016).CrossRefGoogle Scholar
  11. 11.
    A.E. Gheribi, J.A. Torres, and P. Chartrand, Sol. Energy Mater. Sol. Cells 126, 11 (2014).CrossRefGoogle Scholar
  12. 12.
    A.E. Gheribi, M. Salanne, and P. Chartrand, J. Phys. Chem. C 120, 22873 (2016).CrossRefGoogle Scholar
  13. 13.
    A.E. Gheribi, S. Poncsk, L. Kiss, S. Gurard, J.-F. Bilodeau, and P. Chartrand, ACS Omega 2, 2224 (2017).CrossRefGoogle Scholar
  14. 14.
    A.E. Gheribi, S. Poncsk, S. Gurard, J.-F. Bilodeau, L. Kiss, and P. Chartrand, J. Chem. Phys. 146, 114701 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Callaway, Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
  16. 16.
    J. Callaway, Phys. Rev. 120, 1149 (1960)CrossRefGoogle Scholar
  17. 17.
    G. Slack, J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
  18. 18.
    J. Poirier, Introduction to the Physics of the Earth’s Interior. (Cambridge: Cambridge University Press, 2000).CrossRefGoogle Scholar
  19. 19.
    M. Blanco, E. Francisco, and V. Luaa, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Toher, J.J. Plata, O. Levy, M. de Jong, M. Asta, M.B. Nardelli, and S. Curtarolo, Phys. Rev. B 90, 174107 (2014).CrossRefGoogle Scholar
  21. 21.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993)CrossRefGoogle Scholar
  22. 22.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994)CrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  24. 24.
    G. Kresse and Furthmüller, Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  25. 25.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  26. 26.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
  29. 29.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013)Google Scholar
  30. 30.
    B.W. Woods, S.A. Payne, J.E. Marion, R.S. Hughes, and L.E. Davis, J. Opt. Soc. Am. B 8, 970 (1991).CrossRefGoogle Scholar
  31. 31.
    A.E. Gheribi, J.-L. Gardarein, F. Rigollet, and P. Chartrand, APL Mater. 2, 076105 (2014).CrossRefGoogle Scholar
  32. 32.
    A.E. Gheribi, J.-L. Gardarein, E. Autissier, F. Rigollet, M. Richou, and P. Chartrand, Appl. Phys. Lett. 107, 094102 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Centre for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, Polytechnique MontrealMontrealCanada

Personalised recommendations