Skip to main content
Log in

Development of a TiAl Alloy by Spark Plasma Sintering

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.F. Clark, 787 Propulsion system. Aero Quarterly (2012), http://www.boeing.com/commercial/aeromagazine/articles/2012_q3/2/.

  2. A. Royer and S. Vasseur, Casting Metals Handbook, 9th ed., vol. 15, ed. D.M. Stefanescu (Metals Park: ASM International, 1988),

    Google Scholar 

  3. H. Clemens, W. Wallgram, S. Kremmer, V. Gunther, A. Otto, and A. Bartels, Adv. Eng. Mater. 10, 707 (2008).

    Article  Google Scholar 

  4. F. Appel, H. Clemens, and H. Kestler, Intermetallics Compounds 3, Progress eds. J.H. Westbrook and L. Fleisher, Chapter 29, p. 617 (2002).

  5. D. Cormier, O. Harryson, T. Mahale, and H. West, Res. Lett. Mater. Sci. (2007). doi:10.1155/2007/34737.

    Google Scholar 

  6. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Intermetallics 19, 776 (2011).

    Article  Google Scholar 

  7. M. Griffith, C. Atwood, L. Harwell, E. Schlienger, M. Ensz, J.E. Smugereskeym, T. Romero, D. Green, and D. Reckaway, Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICALEO’98), vol. 1, Laser Institute of America, p. 1 (1998).

  8. J.H. Moll, E. Whitney, C.F. Yolton, and U. Habel, Gamma Titanium Aluminides 1999, eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, H. Clemens, and H.H. Rosenberger, The Minerals, Metals & Materials Society, p. 255 (1999).

  9. L. Löber, R. Petters, U. Kühn, and J. Eckert, 4th International Workshop on Titanium Aluminides, September 13th–16th, Nuremberg, Germany (2011).

  10. L. Löber, F.P. Schimansky, U. Kühn, F. Pyczak, and J. Eckert, J. Mater. Process. Technol. 214, 1852 (2014).

    Article  Google Scholar 

  11. A. Couret, G. Molénat, J. Galy, and M. Thomas, Intermetallics 16, 1134 (2008).

    Article  Google Scholar 

  12. R. Orru, R. Licheri, A. Mario Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R63, 127 (2009).

    Article  Google Scholar 

  13. T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berre, J.F. Castagne, and A. Couret, J. Mater. Process. Technol. 213, 269 (2013).

    Article  Google Scholar 

  14. A. Couret, J.P. Monchoux, L. Durand, H. Jabbar, and T. Voisin, Patent no PCT/IB2012/051527, Déposé le 31 Mars, (2011).

  15. T. Voisin, J.P. Monchoux, L. Durand, N. Karnatak, M. Thomas, and A. Couret, Adv. Eng. Mater. 17 (10), 1408 (2015).

  16. C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian, Acta Metall. 37, 1321 (1989).

    Article  Google Scholar 

  17. Y.W. Kim, JOM 41, 24 (1989).

    Article  Google Scholar 

  18. J.P. Monchoux, J.S. Luo, T. Voisin, and A. Couret, Mater. Sci. Eng. 679, 123–132 (2016).

    Article  Google Scholar 

  19. M. Grange, J.L. Raviart, and M. Thomas, Metall. Mater. Trans. A 35A, 2087 (2004).

    Article  Google Scholar 

  20. H. Jabbar, J.P. Monchoux, M. Thomas, and A. Couret, Acta Mater. 59, 7574 (2011).

    Article  Google Scholar 

  21. F. Appel and M. Oehring, Gamma-titanium aluminide alloys: alloy design and properties. Titanium and Titanium Alloys, vol. 89, ed. C. Leyens and M. Peters (Weinheim: Wiley-VCH, 2003),

    Google Scholar 

  22. H. Jabbar, J.P. Monchoux, F. Houdellier, M. Dolle, F.P. Schimansky, F. Pyczak, M. Thomas, and A. Couret, Intermetallics 18 (12), 2312 (2010).

    Article  Google Scholar 

  23. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger, Intermetallics 16, 969 (2008).

    Article  Google Scholar 

  24. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht, Intermetallics 22, 68 (2012).

    Article  Google Scholar 

  25. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak, Intermetallics 32, 12 (2013).

    Article  Google Scholar 

  26. J.S. Luo, T. Voisin, J.P. Monchoux, and A. Couret, Intermetallics 36, 12 (2013).

    Article  Google Scholar 

  27. D. Hu, Intermetallics 10, 851 (2002).

    Article  Google Scholar 

  28. M. Thomas, J.J. Raviart, and F. Popoff, Intermetallics 13, 944 (2005).

    Article  Google Scholar 

  29. T. Voisin, J.P. Monchoux, M. Hantcherli, S. Mayer, H. Clemens, and A. Couret, Acta Mater. 73, 107 (2014).

    Article  Google Scholar 

  30. A. Couret Alain, J.P. Monchoux, M. Thomas, and T. Voisin, Procédé de fabrication d’une pièce en alliage TiAl, FR1355393, Patent 11 Juin (2013).

  31. T. Voisin, J.P. Monchoux, M. Perrut, and A. Couret, Intermetallics 71, 88 (2016).

    Article  Google Scholar 

  32. T. Voisin, J.P. Monchoux, M. Thomas, C. Deshayes, and A. Couret, Metall. Mater. Trans. 47, 6097 (2016).

    Article  Google Scholar 

  33. T. Klein, M. Schachermayer, F. Mendez-Martin, T. Schöberl, B. Rashkova, H. Clemens, and S. Mayer, Acta Mater. 94, 205 (2015).

    Article  Google Scholar 

  34. V. Recina and B. Karlsson, Mater. Sci. Eng. A262, 70 (1999).

    Article  Google Scholar 

  35. J. Lapin and M. Nazmy, Mater. Sci. Eng. A 380, 298 (2004).

    Article  Google Scholar 

  36. J. Lapin, A. Klimova, and T. Pelachova, Scr. Mater 49, 681 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This study has been conducted in the framework of the cooperative Projects “IRIS-ANR-09-MAPR-0018-06” supported by the French Agence Nationale de la Recherche (ANR) and the “ALTIAERO” Project of the “IDEX-ATS” program supported by the Université Fédérale-Toulouse Midi-Pyrénées, which are acknowledged. The CEMES group thanks the PNF2 for providing SPS facilities (Plateforme Nationale de Frittage Flash/CNRS in Toulouse, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Couret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couret, A., Voisin, T., Thomas, M. et al. Development of a TiAl Alloy by Spark Plasma Sintering. JOM 69, 2576–2582 (2017). https://doi.org/10.1007/s11837-017-2549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2549-6

Navigation