, Volume 69, Issue 11, pp 2383–2389 | Cite as

Enhanced Optical Absorption of Ti Thin Film: Coupled Effect of Deposition and Post-deposition Temperatures

  • Jyoti Jaiswal
  • Satyendra Mourya
  • Gaurav Malik
  • Samta Chauhan
  • Ritu Daipuriya
  • Manpreet Singh
  • Ramesh Chandra


In the present work, structural, morphological and optical properties of nanostructured titanium (Ti) thin films have been studied. The Ti thin films were fabricated on glass substrate by direct current (DC) magnetron sputtering at varying deposition and post-deposition temperatures (T DA) ranging from 373 K to 773 K. The microstructure and morphology of the Ti thin films were found to be highly dependent on T DA. The root mean square surface roughness (δ rms) was found to increase with T DA up to 673 K and then decreased at 773 K. The absorption (A) of Ti films has shown a similar trend as roughness with T DA; however, the reflection (R) has shown an opposite trend. Maximum A ~99–86% and minimum R ~1–14% were observed in the spectral range of 300–1100 nm for the sample fabricated at T DA = 673 K, which exhibited the highest δ rms ~193 nm. Due to its excellent absorption, this film may be a potential candidate for photonic applications such as a super-absorber.



This work has been supported by Grant No. ARMREB/CDSW/2013/152, Government of India, Ministry of Defence. One of the authors, Jyoti Jaiswal, would like to thank the Ministry of Human Resources and Development, India, for providing the financial assistance.


  1. 1.
    K. Hofmann, B. Spangenberg, M. Luysberg, and H. Kurz, Thin Solid Films 436, 168 (2003).CrossRefGoogle Scholar
  2. 2.
    C. Lüdecke, J. Bossert, M. Roth, and K.D. Jandt, Appl. Surf. Sci. 280, 578 (2013).CrossRefGoogle Scholar
  3. 3.
    M.V.S. Ramakrishna, G. Karunasiri, P. Neuzil, U. Sridhar, and W.J. Zeng, Sensor. Actuate. A 79, 122 (2000).CrossRefGoogle Scholar
  4. 4.
    T. Sultana, G. Newaz, G.L. Georgiev, R.J. Baird, G.W. Auner, R. Patwa, and H.J. Herfurth, Thin Solid Films 518, 2632 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Apreutesei, C. Lopes, J. Borges, F. Vaz, and F. Macedo, J. Vac. Sci. Technol. A 32, 41511 (2014).CrossRefGoogle Scholar
  6. 6.
    V.G. Kriger, A.V. Kalenskii, A.A. Zvekov, I.Y. Zykov, and B.P. Aduev, Combust. Explos. Shock Waves 48, 705 (2012).CrossRefGoogle Scholar
  7. 7.
    V.L. Soethe, E.L. Nohara, L.C. Fontana, and M.C. Rezende, J. Aerosp. Technol. Manag. 3, 279 (2011).CrossRefGoogle Scholar
  8. 8.
    J.E. Kennedy, J.W. Early, K.A. Thomas, and C.S. Lester, 28th International Pyrotechnics Seminar, vol 836 (2001)Google Scholar
  9. 9.
    Y.L. Jeyachandran, B. Karunagaran, S.K. Narayandass, and D. Mangalaraj, Mater. Sci. Eng. A 458, 361 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Einollahzadeh-Samadi and R.S. Dariani, Appl. Surf. Sci. 280, 263 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Jaiswal, A. Sanger, A. Kumar, S. Mourya, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, Adv. Mater. Lett. 7, 485 (2016).CrossRefGoogle Scholar
  12. 12.
    A.K. Pal and D. Bharathi, Mohan. Opt. Mater. 48, 121 (2015).CrossRefGoogle Scholar
  13. 13.
    S.K. Sharma and S. Mohan, Appl. Surf. Sci. 282, 492 (2013).CrossRefGoogle Scholar
  14. 14.
    M.J. Miller and J. Wang, Vacuum 120, 155 (2015).CrossRefGoogle Scholar
  15. 15.
    I.C. Noyan and J.B. Cohen, Cryst. Res. Technol. 24, K37 (1989).CrossRefGoogle Scholar
  16. 16.
    M. Chinmulgund, R.B. Inturi, and J.A. Barnard, Thin Solid Films 270, 260 (1995).CrossRefGoogle Scholar
  17. 17.
    P. Chaudhari, J. Vac. Sci. Technol. 9, 520 (1972).CrossRefGoogle Scholar
  18. 18.
    H.S. Story and R.W. Hoffman, Proc. Phys. Soc. Sect. B 70, 950 (1957).CrossRefGoogle Scholar
  19. 19.
    S. Simões, R. Calinas, M.T. Vieira, M.F. Vieira, and P.J. Ferreira, Nanotechnology 21, 145701 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Olijnyk, S. Nakano, A.P. Jephcoat, and K. Takemura, Phys. Rev. B 74, 1 (2006).CrossRefGoogle Scholar
  21. 21.
    O.A. Yassin, S.N. Alamri, and A.A. Joraid, J. Phys. D Appl. Phys. 46, 235301 (2013).CrossRefGoogle Scholar
  22. 22.
    Y.P. Zhao, G.C. Wang, T.M. Lu, G. Palasantzas, and J. De Hosson, Phys. Rev. B 60, 9157 (1999).CrossRefGoogle Scholar
  23. 23.
    X. Zhang, T. Zhang, M. Wong, and Y. Zohar, in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems Work (1997), pp. 535–540Google Scholar
  24. 24.
    B.A. Movchan and A.V. Demchishin, Phys. Met. Metallogr. 28, 83–90 (1969).Google Scholar
  25. 25.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).CrossRefGoogle Scholar
  26. 26.
    J.A. Thornton, Thin Solid Films 171, 5 (1989).CrossRefGoogle Scholar
  27. 27.
    J.A. Thornton, Annu. Rev. Mater. Res. 7, 239 (1977).Google Scholar
  28. 28.
    V. Chawla, R. Jayaganthan, A.K. Chawla, and R. Chandra, J. Mater. Process. Technol. 209, 3444 (2009).CrossRefGoogle Scholar
  29. 29.
    Z. Xin, S. Xiao-Hui, and Z. Dian-Lin, Chin. Phys. B 19, 86802 (2010).CrossRefGoogle Scholar
  30. 30.
    P.S. Shih, T.C. Chang, C.Y. Liang, T.Y. Huang, and C.Y. Chang, Electrochem. Solid-State Lett. 3, 235 (2000).CrossRefGoogle Scholar
  31. 31.
    D. Bergstrom, J. Powell, and A.F.H. Kaplan, J. Appl. Phys. 103, 103515 (2008).CrossRefGoogle Scholar
  32. 32.
    L. Yan and J.A. Woollam, J. Appl. Phys. 92, 4386 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Jyoti Jaiswal
    • 1
  • Satyendra Mourya
    • 1
  • Gaurav Malik
    • 1
  • Samta Chauhan
    • 1
  • Ritu Daipuriya
    • 2
  • Manpreet Singh
    • 2
  • Ramesh Chandra
    • 1
  1. 1.Thin Film Laboratory, Institute Instrumentation CentreIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Photonics DivisionTerminal Ballistics Research LaboratoryChandigarhIndia

Personalised recommendations