Skip to main content
Log in

Synthesis of Rutile TiO2 from Panzhihua Sulfate Titanium Slag by Microwave Heating

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study aimed to assess the utilization of microwave heating for synthesis of rutile TiO2 by employing sulfate titanium slag produced by Panzhihua Iron and Steel Research Institute. To this end, the properties of sulfate titanium slag before and after microwave treatment, i.e., its crystal structure, surface microstructure, and surface chemical functional groups, were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformation infrared (FT-IR) spectroscopy, respectively. Results of XRD analysis showed that the anosovite phase of the sulfate titanium slag transformed to the rutile TiO2 phase under microwave heating at 1100°C for duration of 120 min. Correspondingly, the SEM images revealed that the surface of the sulfate titanium slag grew as a granular substance after microwave roasting. The granular substance was observed to be rutile TiO2 with a rod-shaped structure. FT-IR spectra demonstrated the occurrence of a blue shift at 472.15 cm−1, indicating phase transformation from anosovite to rutile TiO2 because of the roasting process. From the experimental results, it is concluded that microwave heating can be an effective and efficient approach for the synthesis of synthetic rutile TiO2 from sulfate titanium slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Chen, L. Li, C.Y. Tao, Z.H. Liu, N.X. Chen, and J. Peng, J. Alloys Compd. 657, 515 (2016).

    Article  Google Scholar 

  2. D. Chen, Y.Z. Zhang, and C.J. Tu, Mater. Lett. 82, 10 (2012).

    Article  Google Scholar 

  3. D. Chen, Y.Z. Zhang, and Z.T. Kang, Chem. Eng. J. 215, 235 (2013).

    Article  Google Scholar 

  4. G. Chen, J. Chen, J.H. Peng, and R.D. Wan, Trans. Nonferrous Met. Soc. China 20, s198 (2010).

    Article  Google Scholar 

  5. S.H. Guo, G. Chen, J.H. Peng, J. Chen, D.B. Li, and L.J. Liu, Trans. Nonferrous Met. Soc. China 21, 2122 (2011).

    Article  Google Scholar 

  6. S.W. Kingman, W. Vorster, and N.A. Rowson, Miner. Eng. 13, 313 (2000).

    Article  Google Scholar 

  7. K.E. Haque, Int. J. Miner. Process. 57, 1 (1999).

    Article  Google Scholar 

  8. R.M. Kelly and N.A. Rowson, Miner. Eng. 8, 1427 (1995).

    Article  Google Scholar 

  9. G. Chen, J. Alloys Compd. 651, 503 (2015).

    Article  Google Scholar 

  10. G. Chen, J. Chen, and J.H. Peng, Powder Technol. 286, 218 (2015).

    Article  Google Scholar 

  11. G.S. Scott, M. Bradshaw, and J.J. Eksteen, Int. J. Miner. Process. 85, 121 (2008).

    Article  Google Scholar 

  12. G. Chen, K. Xiong, J.H. Peng, and J. Chen, Adv. Powder Technol. 21, 331 (2010).

    Article  Google Scholar 

  13. T.A. Lasheen, Front. Chem. Eng. China 3, 155 (2009).

    Article  Google Scholar 

  14. Y.J. Zhang, Q. Tao, and Y. Zhang, Hydrometallurgy 96, 52 (2009).

    Article  Google Scholar 

  15. Y. Feng, J. Wang, L. Wang, T. Qi, T. Xue, and J. Chu, Rar. Metals 28, 564 (2009).

    Article  Google Scholar 

  16. G. Chen, J. Chen, Z.K. Song, C. Srinivasakannan, and J.H. Peng, J. Alloys Compd. 585, 75 (2014).

    Article  Google Scholar 

  17. G. Chen, Z.K. Song, J. Chen, C. Srinivasakannan, and J.H. Peng, J. Alloys Compd. 577, 610 (2013).

    Article  Google Scholar 

  18. K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, Waste Manag. Res. 24, 74 (2006).

    Article  Google Scholar 

  19. G. Chen, Z.K. Song, J. Chen, J.H. Peng, and C. Srinivasakannan, J. Alloys Compd. 579, 612 (2013).

    Article  Google Scholar 

  20. W. Mo, G.Z. Deng, and F.C. Luo, Titanium metallurgy, 2nd ed. (Beijing: Publishing Press of Metallurgical Industry, 2007), pp. 182–186.

    Google Scholar 

  21. S. Samal, K.K. Rao, P.S. Mukherjee, and T.K. Mukherjee, Chem. Eng. Res. Des. 86, 187 (2008).

    Article  Google Scholar 

  22. P.P. Chris and T. Motlhamme, Miner. Eng. 19, 232 (2006).

    Article  Google Scholar 

  23. L.B. Zhang, G. Chen, J.H. Peng, J. Chen, S.H. Guo, and X.H. Duan, J. Cent. South. Univ. Technol. 16, 588 (2009).

    Article  Google Scholar 

  24. G. Chen, J. Chen, S.H. Guo, J. Li, C. Srinivasakannan, and J.H. Peng, Appl. Surf. Sci. 258, 4826 (2012).

    Article  Google Scholar 

  25. J.H. Peng, J. Yang, M, Huang, and M. Huang, in Antennas, Propagation and EM Theory, 8th International Symposium on ISAPE 2008. (IEEE, 2008).

Download references

Acknowledgements

Financial support from the National Scientific Foundation of China (Nos. 51504110, 51404114), the Open Research Fund of State Key Laboratory of Multiphase Complex Systems (No. MPCS-2017-D-05), and the Specialized Research Fund for the Doctoral Program of High Education (No. 20125314120014) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, G., Wu, Y. et al. Synthesis of Rutile TiO2 from Panzhihua Sulfate Titanium Slag by Microwave Heating. JOM 69, 2660–2665 (2017). https://doi.org/10.1007/s11837-017-2545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2545-x

Navigation