JOM

, Volume 69, Issue 11, pp 2256–2263 | Cite as

Modeling and Simulation of Nanoindentation

Article

Abstract

Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

Notes

Acknowledgements

This work was supported by an NSF CAREER Award (CMMI-1652662). S.H. is also grateful for partial support provided by The University of Missouri Research Board.

References

  1. 1.
    W. Gerberich, J. Nelson, E. Lilleodden, P. Anderson, and J. Wyrobek, Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
  2. 2.
    J. Pethicai, R. Hutchings, and W.C. Oliver, Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
  3. 3.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  4. 4.
    G. Pharr and W. Oliver, MRS Bull. 17, 28 (1992).CrossRefGoogle Scholar
  5. 5.
    B. Bhushan, A.V. Kulkarni, W. Bonin, and J.T. Wyrobek, Philos. Mag. A 74, 1117 (1996).CrossRefGoogle Scholar
  6. 6.
    U. Landman, W. Luedtke, N.A. Burnham, and R.J. Colton, Science 248, 454 (1990).CrossRefGoogle Scholar
  7. 7.
    W.G. Hoover, A.J. De Groot, C.G. Hoover, I.F. Stowers, T. Kawai, B.L. Holian, T. Boku, S. Ihara, and J. Belak, Phys. Rev. A 42, 5844 (1990).CrossRefGoogle Scholar
  8. 8.
    C.L. Kelchner, S. Plimpton, and J. Hamilton, Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
  9. 9.
    T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, and S. Suresh, J. Mech. Phys. Solids 52, 691 (2004).CrossRefGoogle Scholar
  10. 10.
    C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr, Acta Mater. 59, 934 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Ziegenhain, H.M. Urbassek, and A. Hartmaier, J. Appl. Phys. 107, 061807 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, and S. Im, Mech. Mater. 37, 1035 (2005).CrossRefGoogle Scholar
  13. 13.
    K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Phys. Rev. B 67, 104105 (2003).CrossRefGoogle Scholar
  14. 14.
    R.E. Miller and A. Acharya, J. Mech. Phys. Solids 52, 1507 (2004).MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.E. Miller and D. Rodney, J. Mech. Phys. Solids 56, 1203 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Gouldstone, K.J. Van Vliet, and S. Suresh, Nature 411, 656 (2001).CrossRefGoogle Scholar
  17. 17.
    A. Gouldstone, H.-J. Koh, K.-Y. Zeng, A. Giannakopoulos, and S. Suresh, Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
  18. 18.
    K.J. Van Vliet, S. Tsikata, and S. Suresh, Appl. Phys. Lett. 83, 1441 (2003).CrossRefGoogle Scholar
  19. 19.
    D. Feichtinger, P. Derlet, and H. Van Swygenhoven, Phys. Rev. B 67, 024113 (2003).CrossRefGoogle Scholar
  20. 20.
    X.-L. Ma and W. Yang, Nanotechnology 14, 1208 (2003).CrossRefGoogle Scholar
  21. 21.
    J.H. Yoon, S.J. Kim, and H. Jang, in Materials Science Forum (Trans Tech Publ) (2004) p. 89.Google Scholar
  22. 22.
    A. Hasnaoui, P. Derlet, and H. Van Swygenhoven, Acta Mater. 52, 2251 (2004).CrossRefGoogle Scholar
  23. 23.
    H. Jang and D. Farkas, Mater. Lett. 61, 868 (2007).CrossRefGoogle Scholar
  24. 24.
    S.N. Medyanik and S. Shao, Comput. Mater. Sci. 45, 1129 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Shao and S.N. Medyanik, Mech. Res. Commun. 37, 315 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Shao and S. Medyanik, Model. Simul. Mater. Sci. Eng. 18, 055010 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Shao, H. Zbib, I. Mastorakos, and D. Bahr, J. Appl. Phys. 112, 044307 (2012).CrossRefGoogle Scholar
  28. 28.
    S. Shao, H. Zbib, I. Mastorakos, and D. Bahr, J. Eng. Mater. Tech. 135, 021001 (2013).CrossRefGoogle Scholar
  29. 29.
    E. Njeim and D. Bahr, Scr. Mater. 62, 598 (2010).CrossRefGoogle Scholar
  30. 30.
    J. Zhang, T. Sun, A. Hartmaier, and Y. Yan, Comput. Mater. Sci. 59, 14 (2012).CrossRefGoogle Scholar
  31. 31.
    J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, and S. Foiles, Phys. Rev. Lett. 87, 165507 (2001).CrossRefGoogle Scholar
  32. 32.
    K. Sun, W. Shen, and L. Ma, Comput. Mater. Sci. 81, 226 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Belak and I. Stowers, Fundamentals of Friction: Macroscopic and Microscopic Processes (Berlin: Springer, 1992), p. 511.CrossRefGoogle Scholar
  34. 34.
    C.-L. Liu, T.-H. Fang, and J.-F. Lin, Mater. Sci. Eng. A 452, 135 (2007).CrossRefGoogle Scholar
  35. 35.
    J.E. Jones, Proc. R. Soc. London A Math. Phys. Eng. Sci. 106, 463 (1924).CrossRefGoogle Scholar
  36. 36.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988).CrossRefGoogle Scholar
  37. 37.
    D.W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
  38. 38.
    S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
  39. 39.
    G. Ziegenhain, A. Hartmaier, and H.M. Urbassek, J. Mech. Phys. Solids 57, 1514 (2009).CrossRefGoogle Scholar
  40. 40.
    M. Yaghoobi and G.Z. Voyiadjis, Comput. Mater. Sci. 95, 626 (2014).CrossRefGoogle Scholar
  41. 41.
    I. Szlufarska, R.K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 85, 378 (2004).CrossRefGoogle Scholar
  42. 42.
    P. Walsh, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, Appl. Phys. Lett. 77, 4332 (2000).CrossRefGoogle Scholar
  43. 43.
    P. Walsh, A. Omeltchenko, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, Appl. Phys. Lett. 82, 118 (2003).CrossRefGoogle Scholar
  44. 44.
    J.A. Stewart and D. Spearot, Model. Simul. Mater. Sci. Eng. 21, 045003 (2013).CrossRefGoogle Scholar
  45. 45.
    V. Mollica, A. Relini, R. Rolandi, M. Bolognesi, and A. Gliozzi, Eur. Phys. J. E 3, 315 (2000).CrossRefGoogle Scholar
  46. 46.
    G. Pätzold, A. Linke, T. Hapke, and D. Heermann, Z. Phys. B Condens. Matter 104, 513 (1997).CrossRefGoogle Scholar
  47. 47.
    N. Takahashi, M. Shiojiri, and S. Enomoto, Wear 146, 107 (1991).CrossRefGoogle Scholar
  48. 48.
    E. Tadmor, R. Phillips, and M. Ortiz, Langmuir 12, 4529 (1996).CrossRefGoogle Scholar
  49. 49.
    V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, J. Mech. Phys. Solids 47, 611 (1999).MathSciNetCrossRefGoogle Scholar
  50. 50.
    E. Tadmor, R. Miller, R. Phillips, and M. Ortiz, J. Mater. Res. 14, 2233 (1999).CrossRefGoogle Scholar
  51. 51.
    R.A. Iglesias and E.P. Leiva, Acta Mater. 54, 2655 (2006).CrossRefGoogle Scholar
  52. 52.
    Z. Fanlin and S. Yi, Acta Mech. Solida Sin. 19, 283 (2006).CrossRefGoogle Scholar
  53. 53.
    J. Jin, S. Shevlin, and Z. Guo, Acta Mater. 56, 4358 (2008).CrossRefGoogle Scholar
  54. 54.
    G. Smith, E. Tadmor, N. Bernstein, and E. Kaxiras, Acta Mater. 49, 4089 (2001).CrossRefGoogle Scholar
  55. 55.
    T. Tsuru and Y. Shibutani, Phys. Rev. B 75, 035415 (2007).CrossRefGoogle Scholar
  56. 56.
    W.-G. Jiang, J.-J. Su, and X.-Q. Feng, Eng. Fract. Mech. 75, 4965 (2008).CrossRefGoogle Scholar
  57. 57.
    H. Lu and Y. Ni, Thin Solid Films 520, 4934 (2012).CrossRefGoogle Scholar
  58. 58.
    H. Lu, Y. Ni, J. Mei, J. Li, and H. Wang, Comput. Mater. Sci. 58, 192 (2012).CrossRefGoogle Scholar
  59. 59.
    W. Yu and S. Shen, Mater. Sci. Eng. A 526, 211 (2009).CrossRefGoogle Scholar
  60. 60.
    J. Li, Y. Ni, H. Wang, and J. Mei, Nanoscale Res. Lett. 5, 420 (2009).CrossRefGoogle Scholar
  61. 61.
    H. Lu, J. Li, and Y. Ni, Comput. Mater. Sci. 50, 2987 (2011).CrossRefGoogle Scholar
  62. 62.
    W. Yu and S. Shen, Comput. Mater. Sci. 46, 425 (2009).CrossRefGoogle Scholar
  63. 63.
    W. Yu and S. Shen, Eng. Fract. Mech. 77, 3329 (2010).CrossRefGoogle Scholar
  64. 64.
    L. Shilkrot, W.A. Curtin, and R.E. Miller, J. Mech. Phys. Solids 50, 2085 (2002).CrossRefGoogle Scholar
  65. 65.
    B. Devincre and M. Condat, Acta Metall. Mater. 40, 2629 (1992).CrossRefGoogle Scholar
  66. 66.
    H.M. Zbib, M. Rhee, and J.P. Hirth, Int. J. Mech. Sci. 40, 113 (1998).CrossRefGoogle Scholar
  67. 67.
    A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Model. Simul. Mater. Sci. Eng. 15, 553 (2007).CrossRefGoogle Scholar
  68. 68.
    C. Zhou, S.B. Biner, and R. LeSar, Acta Mater. 58, 1565 (2010).CrossRefGoogle Scholar
  69. 69.
    C. Zhou, S. Biner, and R. LeSar, Scr. Mater. 63, 1096 (2010).CrossRefGoogle Scholar
  70. 70.
    C. Zhou and R. LeSar, Int. J. Plast. 30, 185 (2012).CrossRefGoogle Scholar
  71. 71.
    S. Huang, J. Wang, and C. Zhou, Mater. Sci. Eng. A 636, 430 (2015).CrossRefGoogle Scholar
  72. 72.
    M. Fivel, M. Verdier, and G. Canova, Mater. Sci. Eng. A 234, 923 (1997).CrossRefGoogle Scholar
  73. 73.
    M. Rathinam, R. Thillaigovindan, and P. Paramasivam, J. Mech. Sci. Technol. 23, 2652 (2009).CrossRefGoogle Scholar
  74. 74.
    T. Tsuru, Y. Shibutani, and Y. Kaji, Acta Mater. 58, 3096 (2010).CrossRefGoogle Scholar
  75. 75.
    D. Peirce, R. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).CrossRefGoogle Scholar
  76. 76.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).CrossRefGoogle Scholar
  77. 77.
    H.-J. Chang, M. Fivel, D. Rodney, and M. Verdier, C. R. Phys. 11, 285 (2010).CrossRefGoogle Scholar
  78. 78.
    W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
  79. 79.
    S. Qu, Y. Huang, G. Pharr, and K. Hwang, Int. J. Plast. 22, 1265 (2006).CrossRefGoogle Scholar
  80. 80.
    T. Britton, H. Liang, F. Dunne, and A. Wilkinson, Proc. R. Soc. London A Math. Phys. Eng. Sci. 466, 695 (2010).CrossRefGoogle Scholar
  81. 81.
    S. Kucharski, S. Stupkiewicz, and H. Petryk, Exp. Mech. 54, 957 (2014).CrossRefGoogle Scholar
  82. 82.
    Y. Wang, D. Raabe, C. Klüber, and F. Roters, Acta Mater. 52, 2229 (2004).CrossRefGoogle Scholar
  83. 83.
    B. Eidel, Acta Mater. 59, 1761 (2011).CrossRefGoogle Scholar
  84. 84.
    J. Alcala, A. Barone, and M. Anglada, Acta Mater. 48, 3451 (2000).CrossRefGoogle Scholar
  85. 85.
    X. Qiu, Y. Huang, W. Nix, K. Hwang, and H. Gao, Acta Mater. 49, 3949 (2001).CrossRefGoogle Scholar
  86. 86.
    Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Int. J. Plast. 24, 1990 (2008).CrossRefGoogle Scholar
  87. 87.
    N. Zaafarani, D. Raabe, R. Singh, F. Roters, and S. Zaefferer, Acta Mater. 54, 1863 (2006).CrossRefGoogle Scholar
  88. 88.
    M. Liu, C. Lu, K.A. Tieu, C.-T. Peng, and C. Kong, Sci. Rep. 5, 15072 (2015).CrossRefGoogle Scholar
  89. 89.
    Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R. McCabe, Y. Jiang, and C. Tome, Nat. Commun. 7, 11577 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations