JOM

, Volume 69, Issue 11, pp 2309–2313 | Cite as

Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

Article

Abstract

Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

Notes

Acknowledgements

The authors thank Stratasys Direct Manufacturing for providing the shot-peened DMLS samples. Bandar AlMangour also thanks the Saudi Basic Industries Corporation (SABIC) for their financial support.

References

  1. 1.
    M. Averyanova, E. Cicala, P. Bertrand, and D. Grevey, Rapid Prototyp. J. 18, 28 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Das, Adv. Eng. Mater. 5, 701 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, and R. Hague, Proc. Annu. Int. Solid Freeform Fabr. Symp. Addit. Manuf. Conf. 23, 934 (2012).Google Scholar
  4. 4.
    A. Simchi, F. Petzoldt, and H. Pohl, J. Mater. Process. Technol. 141, 319 (2003).CrossRefGoogle Scholar
  5. 5.
    P. Jerrard, L. Hao, and K. Evans, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 223, 1409 (2009).CrossRefGoogle Scholar
  6. 6.
    L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo, J. Mater. Res. Technol. 1, 167 (2012).CrossRefGoogle Scholar
  7. 7.
    H.K. Rafi, D. Pal, N. Patil, T.L. Starr, and B.E. Stucker, J. Mater. Eng. Perform. 23, 4421 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Facchini, N. Vicente, I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari, Adv. Eng. Mater. 12, 184 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, Proc. Annu. Int. Solid Freeform Fabr. Symp. Addit. Manuf. Conf. 24, 274 (2013).Google Scholar
  10. 10.
    T.L. Starr, K. Rafi, B. Stucker, and C.M. Scherzer, Proc. Annu. Int. Solid Freeform Fabr. Symp. Addit. Manuf. Conf. 23, 195 (2012).Google Scholar
  11. 11.
    A. Gratton, Proc. Natl. Conf. Undergrad. Res. 2012, 423 (2012).Google Scholar
  12. 12.
    M. Averyanova, P. Bertrand, and B. Verquin, Virtual Phys. Prototyp. 6, 215 (2011).CrossRefGoogle Scholar
  13. 13.
    T.M. Mower and M.J. Long, Mater. Sci. Eng. A 651, 198 (2016).CrossRefGoogle Scholar
  14. 14.
    B. AlMangour and J.-M. Yang, Int. J. Adv. Manuf. Technol. 90, 119 (2017).CrossRefGoogle Scholar
  15. 15.
    B. AlMangour and J.-M. Yang, Mater. Des. 110, 914 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Spierings, T. Starr, and K. Wegener, Rapid Prototyp. J. 19, 88 (2013).CrossRefGoogle Scholar
  17. 17.
    E. Uhlmann, C. Fleck, G. Gerlitzky, and F. Faltin, Procedia CIRP 61, 588 (2017).CrossRefGoogle Scholar
  18. 18.
    E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Procedia 56, 371 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
  20. 20.
    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Bagherifard and M. Guagliano, Eng. Fract. Mech. 81, 56 (2012).CrossRefGoogle Scholar
  22. 22.
    L.V. Costa, J.R.G. Carneiro, R.P.C. Catalão, O.K. Ribas, and P. Brito, Adv. Mater. Res. 996, 749 (2014).CrossRefGoogle Scholar
  23. 23.
    G.J. Gibson, K.M. Perkins, S. Gray, and A. Leggett, Mater. High Temp. 33, 225 (2016).CrossRefGoogle Scholar
  24. 24.
    V. Fridrici, S. Fouvry, and P. Kapsa, Wear 250, 642 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Benedetti, V. Fontanari, M. Bandini, and E. Savio, Int. J. Fatigue 70, 451 (2015).CrossRefGoogle Scholar
  26. 26.
    Y.-K. Gao, M. Yao, and J.-K. Li, Metall. Mater. Trans. A 33, 1775 (2002).CrossRefGoogle Scholar
  27. 27.
    N. Karapatis, Y. Guidoux, P. Gygax, and R. Glardon, Proc. Annu. Int. Solid Freeform Fabr. Symp. Addit. Manuf. Conf. 8, 79 (1998).Google Scholar
  28. 28.
    J. Kotila, T. Syvänen, J. Hänninen, M. Latikka, and O. Nyrhilä, Mater. Sci. Forum 534–536, 461 (2007).CrossRefGoogle Scholar
  29. 29.
    C. Sanz and V.G. Navas, J. Mater. Process. Technol. 213, 2126 (2013).CrossRefGoogle Scholar
  30. 30.
    B. Clausen, D.W. Brown, J.S. Carpenter, K.D. Clarke, A.J. Clarke, S.C. Vogel, J.D. Bernardin, D. Spernjak, and J.M. Thompson, Mater. Sci. Eng. A 696, 331 (2017).CrossRefGoogle Scholar
  31. 31.
    C. Hsiao, C. Chiou, and J. Yang, Mater. Chem. Phys. 74, 134 (2002).CrossRefGoogle Scholar
  32. 32.
    H. Mirzadeh and A. Najafizadeh, Mater. Chem. Phys. 116, 119 (2009).CrossRefGoogle Scholar
  33. 33.
    T. Gladman, Proc. R. Soc. London A: Math. Phys. Eng. Sci.: R. Soc. 294, 298 (1966).CrossRefGoogle Scholar
  34. 34.
    D. Cai, P. Nie, J. Shan, W. Liu, M. Yao, and Y. Yao, J. Mater. Eng. Perform. 614–7, 15 (2006).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Engineering and Applied ScienceHarvard UniversityCambridgeUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations