, Volume 69, Issue 11, pp 2302–2308 | Cite as

Characterization of Copper Coatings Deposited by High-Velocity Oxy-Fuel Spray for Thermal and Electrical Conductivity Applications

  • H. R. Salimijazi
  • M. Aghaee
  • M. Salehi
  • E. Garcia


Copper coatings were deposited on steel substrates by high-velocity oxy-fuel spraying. The microstructure of the feedstock copper powders and free-standing coatings were evaluated by optical and scanning electron microscopy. The x-ray diffraction pattern was utilized to determine phase compositions of powders and coatings. Oxygen content was determined by a LECO-T300 oxygen determiner. The thermal conductivity of the coatings was measured in two directions, through-thickness and in-plane by laser flash apparatus. The electrical resistivity of the coatings was measured by the four-point probe method. Oxygen content of the coatings was two times higher than that of the initial powders (0.35–0.37%). The thermal and electrical conductivities of the coatings were different depending on the direction of the measurement. The thermal and electrical conductivity of the coatings improved after annealing for 6 h at a temperature of 600°C.



Dr. E. Garcia acknowledges the financial support of Project MAT2009-09600 and the Ramon y Cajal Program of the Ministry Economy and Competitiveness of Spain (MINECO).

Supplementary material

11837_2017_2537_MOESM1_ESM.docx (909 kb)
Supplementary material 1 (DOCX 908 kb)


  1. 1.
    C. Borchers, F. Gärtner, T. Stoltenhoff, H. Kreye, and H. Assadi, J. Appl. Phys. 93, 10064 (2003).CrossRefGoogle Scholar
  2. 2.
    C.-J. Li and A. Ohmori, J. Therm. Spray Technol. 11, 365 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Sharma, R.J. Gambino, and S. Sampath, Acta Mater. 54, 59 (2006).Google Scholar
  4. 4.
    F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Koçak, Surf. Coat. Technol. 200, 6770 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Schroeder, J. Therm. Spray Technol. 7, 325 (1998).CrossRefGoogle Scholar
  6. 6.
    T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Surf. Coat. Technol. 200, 4947 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Liu, K. Yang, C.-M. Deng, C.-G. Deng, and K. Zhao, J. Therm. Spray Technol. 25, 1516 (2016).CrossRefGoogle Scholar
  8. 8.
    W.-Y. Li, C.-J. Li, and H. Liao, J. Therm. Spray Technol. 15, 206 (2006).CrossRefGoogle Scholar
  9. 9.
    P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi, and G. Sundararajan, J. Therm. Spray Technol. 16, 425 (2007).CrossRefGoogle Scholar
  10. 10.
    C.J. Li and W.Y. Li, Surf. Coat. Technol. 162, 31 (2003).CrossRefGoogle Scholar
  11. 11.
    C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Acta Mater. 53, 2991 (2005).CrossRefGoogle Scholar
  12. 12.
    W.Y. Li, C.J. Li, and H.L. Liao, Appl. Surf. Sci. 256, 4953 (2010).CrossRefGoogle Scholar
  13. 13.
    W.Y. Li, X.P. Guo, M. Yu, H.L. Liao, and C. Coddet, J. Therm. Spray Technol. 20, 252 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Yu, W.Y. Li, X.P. Guo, and H.L. Liao, J. Therm. Spray Technol. 22, 433 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Mater. Sci. Eng. A 364, 216 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Surf. Coat. Technol. 187, 6 (2004).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Acta Mater. 51, 5319 (2003).CrossRefGoogle Scholar
  18. 18.
    R.C. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwright, J. Therm. Spray Technol. 9, 73 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • H. R. Salimijazi
    • 1
  • M. Aghaee
    • 1
  • M. Salehi
    • 1
  • E. Garcia
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Institute of Ceramics and Glass, ICV-CSICMadridSpain

Personalised recommendations