Skip to main content
Log in

Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC–HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Içöz, L. Patriarca, M. Filippini, and S. Beretta, Proc. Eng. 74, 443 (2014).

    Article  Google Scholar 

  2. D. Gosslar, R. Günther, U. Hecht, C. Hartig, and R. Bormann, Acta Mater. 58, 6744 (2010).

    Article  Google Scholar 

  3. R.M. Imayev, V.M. Imayev, M. Oehring, and F. Appel, Intermetallics 15, 451 (2007).

    Article  Google Scholar 

  4. W.G. Burgers, Physica 1, 561 (1934).

    Article  Google Scholar 

  5. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger, Intermetallics 16, 969 (2008).

    Article  Google Scholar 

  6. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak, Intermetallics 32, 2 (2013).

    Article  Google Scholar 

  7. H. Clemens, A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, G. Dehm, R. Gerling, and F.P. Schimansky, Intermetallics 14, 1380 (2006).

    Article  Google Scholar 

  8. D. Hu, A.J. Huang, and X. Wu, Intermetallics 15, 327 (2007).

    Article  Google Scholar 

  9. S. Sankaran, E. Bouzy, J.J. Fundenberger, and A. Hazotte, Intermetallics 17, 1007 (2009).

    Article  Google Scholar 

  10. A. Sankaran, E. Bouzy, M. Humbert, and A. Hazotte, Acta Mater. 57, 1230 (2009).

    Article  Google Scholar 

  11. M. Hillert, L. Höglund, and J. Ågren, Acta Mater. 51, 2089 (2003).

    Article  Google Scholar 

  12. M. Oehring, A. Stark, M. Rackel, N. Schell, F. Pyczak, and A. Schreyer, Conference Presentation, Intermetallics 2015 (Germany: Kloster Banz, 2015). https://www.intermetallics-conference.de.

  13. N. Gey and M. Humbert, Acta Mater. 50, 277 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Hecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, U., Witusiewicz, V.T. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys. JOM 69, 2588–2595 (2017). https://doi.org/10.1007/s11837-017-2530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2530-4

Navigation