, Volume 69, Issue 11, pp 2358–2363 | Cite as

Selective Separation of Similar Metals in Chloride Solution by Sulfide Precipitation Under Controlled Potential

  • Weifeng Liu
  • Baiqi Sun
  • Duchao Zhang
  • Lin Chen
  • Tianzu Yang


A new process of sulfide precipitation under controlled potential was proposed to separate selectively similar metals in a Bis(2-ethylhexyl) phosphoric acid (P204) stripping solution of the Co extraction system. Theoretical calculations revealed that Cu2+, Co2+, Zn2+, and Mn2+ could be separated by fractional precipitation with sulfide by controlling the solution potential and pH value simultaneously. The results demonstrated a Cu precipitation ratio reaching 99.9% during sulfide precipitation of Cu at the potential of 330 mV; the Cu/Co mass ratio in the Cu precipitate was 224. The Co precipitation ratio in the xanthate precipitation of Co, at a potential of 170 mV, was 99.9%, and the Co/Zn mass ratio in the Co precipitate was 28.0. The Zn precipitation ratio reached 99.9% for sulfide precipitation of Zn at the potential of 30 mV, and the Zn/Mn mass ratio in the Zn precipitate was 1.41. The Mn precipitation ratio reached 99.9% after neutralization.



The authors acknowledge the support of the Young Scientists Fund of National Natural Science Foundation of China (Grant No. 51404296) and the Postdoctoral Science Foundation of China (Grant No. 2016M602427). We also thank the Jinchuan New Material Technology Limited Company for providing the raw material.


  1. 1.
    S.J. Wang, JOM 58, 47 (2006).CrossRefGoogle Scholar
  2. 2.
    E. Peek, T. Akre, and E. Asselin, JOM 61, 43 (2009).CrossRefGoogle Scholar
  3. 3.
    C.J. Ferron, JOM 60, 50 (2008).CrossRefGoogle Scholar
  4. 4.
    K.B. Shedd, Coblt, vol. 19 (Virginia: Geological Survey Mineral Yearbook, 2011), pp. 1–8.Google Scholar
  5. 5.
    H.H. He and Q.F. Cai, Chinese Metallurgy of Nickel and Cobalt, 1st ed. (Beijing: Metallurgy Industry Press, 1999), pp. 654–655.Google Scholar
  6. 6.
    X.Y. Chen, A.L. Chen, Z.W. Zhao, X.H. Liu, Y.C. Shi, and D.Z. Wang, Hydrometallurgy 133, 106 (2013).CrossRefGoogle Scholar
  7. 7.
    A.E. Lewis, Hydrometallurgy 104, 222 (2010).CrossRefGoogle Scholar
  8. 8.
    G.S. Zeng and G. Xie, Trans. Nonferrous Met. Soc. China 18, s117 (2008).CrossRefGoogle Scholar
  9. 9.
    L.W. Ma, Z.R. Nie, X.L. Xi, and X.G. Han, Hydrometallurgy 136, 1 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Rengaraj, K.H. Yeon, S.Y. Kang, J.U. Lee, K.W. Kim, and S.H. Moon, J. Hazard. Mater. 92, 185 (2002).CrossRefGoogle Scholar
  11. 11.
    M. Kara, H. Yuzer, E. Sabah, and M.S. Celik, Water Res. 37, 224 (2003).CrossRefGoogle Scholar
  12. 12.
    I. Smiciklas, S. Dimovic, I. Plecas, and M. Mitric, Water Res. 40, 2267 (2006).CrossRefGoogle Scholar
  13. 13.
    W.F. Liu, S. Rao, W.Y. Wang, T.Z. Yang, Y. Lin, L. Chen, and D.C. Zhang, Int. J. Miner. Process. 141, 8 (2015).CrossRefGoogle Scholar
  14. 14.
    J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (Beijing: Science Press, 2003), p. 6.Google Scholar
  15. 15.
    J. Jandova, K. Lisa, H. Vu, and F. Vranka, Hydrometallurgy 77, 1 (2005).CrossRefGoogle Scholar
  16. 16.
    Y.H. Wang and H.B. Deng, Copper Mineral Processing Technology, 1st ed. (Changsha: Center South University Press, 2012), pp. 58–60.Google Scholar
  17. 17.
    S. Foucher, F. Battaglia-Brunet, I. Ignatiadis, and D. Morin, Chem. Eng. Sci. 4, 1639 (2001).CrossRefGoogle Scholar
  18. 18.
    Q.Q. Lin, G.H. Gu, H. Wang, C.Q. Wang, Y.C. Liu, R.F. Zhu, and J.G. Fu, Trans. Nonferrrous Met. Soc. China 26, 1118 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Weifeng Liu
    • 1
    • 2
  • Baiqi Sun
    • 1
  • Duchao Zhang
    • 1
  • Lin Chen
    • 1
  • Tianzu Yang
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Henan Yuguang Gold and Lead Group Co., Ltd.JiyuanPeople’s Republic of China

Personalised recommendations