Abstract
High entropy alloys (HEAs) is a fascinating field of research, with an increasing number of new alloys discovered. This would hardly be conceivable without the aid of materials modeling and computational alloy design to investigate the immense compositional space. The simplicity of the microstructure achieved contrasts with the enormous complexity of its composition, which, in turn, increases the variety of property behavior observed. Simulation and modeling techniques are of paramount importance in the understanding of such material performance. There are numerous examples of how different models have explained the observed experimental results; yet, there are theories and approaches developed for conventional alloys, where the presence of one element is predominant, that need to be adapted or re-developed. In this paper, we review of the current state of the art of the modeling techniques applied to explain HEAs properties, identifying the potential new areas of research to improve the predictability of these techniques.
This is a preview of subscription content, access via your institution.





References
I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-DÃaz-Del-Castillo, J. Alloys Compd. 566, 217 (2013).
D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).
J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, and S.L. Dudarev, Phys. Rev. B 91, 024108 (2015).
Z. Leong, J.S. Wróbel, S.L. Dudarev, R. Goodall, I. Todd, and D. Nguyen-Manh, Sci. Rep.-UK 7, 39803 (2017).
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).
M. Widom, W.P. Huhn, S. Maiti, and W. Steurer, Metall. Mater. Trans. A 45, 196 (2014).
M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Phys. Rev. X 5, 011041 (2015).
R. Raghavan, K.C. Hari, Kumar, and B.S. Murty, J. Alloys Compd. 544, 152 (2012)
F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, Calphad 45, 1 (2014).
O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Calphad 50, 32 (2015).
I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, and P.E.J. Rivera-D-az-Del-Castillo, Acta Mater. 97, 156 (2015).
Z. Wang, W. Qiu, Y. Yang, and C.T. Liu, Intermetallics 64, 63 (2015).
Y.F. Ye, C.T. Liu, and Y. Yang, Acta Mater. 94, 152 (2015).
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Acta Mater. 94, 124 (2015).
I. Toda-Caraballo and P.E.J. Rivera-DÃaz-Del-Castillo, Acta Mater. 85, 14 (2015).
I. Toda-Caraballo, Scripta Mater. 127, 113 (2017).
Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).
M.G. Poletti and L. Battezzati, Acta Mater. 75, 297 (2014).
S. Guo and C.T. Liu, Prog. Nat. Sci. 21, 433 (2011).
S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).
Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, MRS Commun. 4, 57 (2014).
I. Toda-Caraballo and P.E.J. Rivera-DÃaz-Del-Castillo, Intermetallics 71, 76 (2016).
F. Tancret, I. Toda-Caraballo, E. Menou, and P.E.J. Rivera DÃaz-Del-Castillo, Mater. Des. 115, 486 (2017).
L. Asensio Dominguez, R. Goodall, I. Todd, Mater. Sci. Tech.-UK 31, 1201 (2015)
M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, Metall. Mater. Trans. A 47, 3322 (2016).
R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Entropy 18, 333 (2016).
A.B. Melnick and V.K. Soolshenko, J. Alloys Compd. 694, 223 (2017).
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, J. Alloys Compd. 696, 1139 (2017).
D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Acta Mater. 98, 288 (2015).
M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, editors, High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer, Cham, 2016).
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).
X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).
Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li, J. Alloys Compd. 573, 96 (2013).
A. Kumar and M. Gupta, Metals 6, 199 (2016).
Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Intermetallics 52, 105 (2014).
A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, Intermetallics 53, 112 (2014).
I. Toda-Caraballo and P.E.J. Rivera-DÃaz del Castillo, JOM 67, 108 (2015).
H.K.D.H. Bhadeshia, Stat. Ana. Data Min. 1, 296 (2009).
M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).
D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).
B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo, Mater. Scie. Tech.-UK 31, 1207 (2015).
T. Gómez-Acebo, B. Navarcorena, and F. Castro, J. Phase Equilib. Diff. 25, 237 (2004).
C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.C. Dumasean, S. Gossé, S. Chataine, F.D. Bruycker, D. Manara, and R.J.M. Konings, J. Nucl. Mater. 419, 145 (2011).
R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, and J.-M. Joubert, Calphad 43, 18 (2013).
C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).
F. He, A. Wang, Y. Li, Q. Wu, J. Li, J. Wang, and C.T. Liu, Sci. Rep. 6, 34628 (2016).
N.G. Jones, R. Izzo, P.M. Mignanelli, K.A. Christofidou, and H.J. Stone, Intermetallics 71, 43 (2016).
E.I. Galindo-Nava, P.E.J. Rivera-DÃaz-del Castillo, Acta Mater. 128, 120 (2017)
G. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).
R. Li, S. Lu, D. Kim, S. Schnecker, J. Zhao, S.K. Kwon, and L. Vitos, J. Phy. Condens. Matter 28, 395001 (2016).
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmstrm, and L. Vitos, Scripta Mater. 108, 44 (2015).
A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).
M.S. Lucas, D. Belyea, C. Bauser, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Howarth, S.L. Semiatin, M.E. McHenry, and C.W. Miller, J. Appl. Phys. 113, 17A923 (2013).
M.Y. Lavrentiev, D. Nguyen-Manh, and S.L. Dudarev, Phys. Rev. B 81, 184202 (2010).
M. Calvo-Dahlborg, J. Cornide, J. Tobola, D. Nguyen-Manh, J.S. Wróbel, J. Juraszek, S. Jouen, and U Dahlborg, J. Phys. D Appl. Phys. 50, 185002 (2017).
J. Connolly and A. Williams, Phys. Rev. B 27, 5169 (1983).
M.E.J. Newman and G.T. Barkema, Monte Carlo methods in statistical physics. Springer, Berlin (1999).
A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, and D. Nguyen-Manh, J. Phase Equilibria Diffus. 38, 391 (2017).
M.Y. Lavrentiev, J.S. Wróbel, D. Nguyen-Manh, and S.L. Dudarev, Phys. Chem. Chem. Phys. 16, 16049 (2014).
E.J. Pickering, R. Murioz-Mureno, H.J. Stone, and N.G. Jones, Scripta Mater. 113, 106 (2016).
M. W. Finnis, Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2003)
M. Aoki, D. Nguyen-Manh, V. Vitek, and D.G. Pettifor, Prog. Mat. Sci. 52, 154 (2007).
D. Nguyen-Manh, V. Vitek, and A.P. Horsfield, Prog. Mater. Sci. 52, 255 (2007).
M. Mrovec, D. Nguyen-Manh, C. Elsasser, and P. Gumbsch, Phys. Rev. Lett. 106, 246402 (2011).
M.W. Finnis and J.E. Sinclair, Philos. Mag. A 50, 45 (1984).
M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).
M.I. Baskes, Phys. Rev. B 46, 2727 (1992).
S.L. Dudarev and P.M. Derlet, J. Phys: Condens. Matter 17, 7097 (2005).
F. Gransberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).
W.M. Choi, Y. Kim, D. Seol, and B.J. Lee, Comput. Mater. Sci. 130, 121 (2017).
Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).
M.S. Anzorena, A.A. Bertolo, L. Gagetti, A.J. Kreiner, H.O. Mosca, G. Bozzolo, and M.F. del Grosso, Mater. Des. 111, 382 (2016).
N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, J. Alloys Compd. 652, 266 (2015).
J. Wang, Y. Liu, B. Liu, Y. Wang, Y. Cao, T. Li, and R. Zhou, Mater. Sci. Eng. A 689, 233 (2017).
L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Scripta Mater. 112, 54 (2016).
Q. Yao, S.-L. Shang, Y.-J. Hu, Y. Wang, Y. Wang, Y.-H. Zhu, and Z.-K. Liu, Intermetallics 78, 1 (2016).
Q. Yao, S.-L. Shang, K. Wang, F. Liu, Y. Wang, Q. Wang, T. Lu, and Z.-K. Liu, J. Mater. Res. 32, 2100 (2017).
P. Pérez, Corros. Sci. 49, 1172 (2007).
P. Pérez, G. Salmi, A. Muñoz, and M.A. Monge, Scripta Mater. 60, 1008 (2009).
P. Pérez, V.A.C. Haanappel, and M.F. Stroosnijder, Oxid. Met. 53, 481 (2000).
P. Pérez, V.A.C. Haanappel, and M.F. Stroosnijder. Mater. Sci. Eng. A, 284, 126, (2000).
J.J. Van de Broek and J.L. Meijering, Acta Metall. 16, 375 (1968).
S. Wang, Y. Wu, F. Gesmundo, and Y. Niu, Oxid. Met. 65, 299 (2006).
X.J. Zhang, S.Y. Wang, F. Gesmundo, and Y. Niu, Oxid. Met. 69, 151 (2008).
P. Pérez, J.L. González-Carrasco, and P. Adeva, Oxid. Met. 48, 143 (1997).
D.L. Douglass, Corros. Sci. 8, 665 (1968).
P. Pérez and P. Adeva, Oxid. Met. 65, 15 (2006).
H. Lai, Y. Cao, P. Viklund, F. Karlsson, L.-G. Johansson, and K. Stiller, Oxid. Met. 80, 505 (2013).
W. Kai, W.L. Jang, R.T. Huang, C.C. Lee, H.H. Hsieh, and C.F. Du, Oxid. Met. 63, 169 (2005).
W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Corros. Sci. 121, 116 (2017).
T.K. Tsao, A.C. Yeh, C.M. Kuo, and H. Murakami, Entropy 18, 62 (2016).
M.B. Karpetz, E.S. Makarenko, A.N. Mislibchenko, N.A. Krapibka, B.F. Gorban, S.J. Makarenko, Metallofiz. Noveishie Tekhnol 36, 829 (2014) (in Russian).
T.M. Butler, J.P. Alfano, R.L. Martens, and M.L. Weaver, JOM 67, 246 (2015).
J. Dabrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Intermetallics 84, 52 (2017).
H. Prasad, S. Singh, and B.B. Panigrahi, J. Alloys Compd. 692, 720 (2017).
S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).
H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, and U. Glatzel, Adv. Eng. Mater. 17, 1134 (2015).
T.M. Butler and M.L. Weaver, J. Alloys Compd. 674, 229 (2016).
Y.X. Liu, C.Q Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao, Trans. Nonferrous Met. Soc. China 25, 1341 (2015).
G.R. Holcomb, J. Tylczak, and C. Carney, JOM 67, 2326 (2015).
Y.J. Chang and A.C. Yeh, J. Alloys Compd. 653, 379 (2015).
W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Corros. Sci. 108, 209 (2016).
C. Huang, Y. Zhang, J. Shen, and R. Vilar, Surf. Coat. Technol. 206, 1389 (2011).
T.M. Butler and M.L. Weaver, Metals 6, 222 (2016).
B. Gorr, F. Müller, M. Azim, H.J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, Oxid. Met. (2017). doi:10.1007/s11085-016-9696-y.
B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, J. Alloys Compd. 688, 468 (2016).
O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, J. Mater. Sci. 47, 6522 (2012).
C.M. Liu, H.M. Wang, S.Q. Zhan, H.B. Tang, and A.L. Zhang, J. Alloys Compd. 583, 162 (2014).
B. Gorr, M. Azim, H.J. Christ, T Mueller, D. Schliephake, and M. Heilmaier, J. Alloys Compd 624, 270 (2015).
P. Kofstad, High Temperature Corrosion. (Elsevier Applied Science, London/New York 1988).
C. Wagner, J. Electrochem. Soc. 99, 369 (1952).
F. Gesmundo, F. Viani, Y. Niu, and D.L. Douglass, Oxid. Met. 40, 373 (1993).
F. Gesmundo, F. Viani, Y. Niu, and D.L. Douglass, Oxid. Met. 42, 239 (1994).
F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 45, 51 (1996).
P. Saltykov, O. Fabrichnaya, J. Golczewski, and F. Aldinger, J. Alloys Compd. 381, 99 (2004).
V.K. Tolpygo and D.R. Clarke, Acta Mater. 46, 5167 (1998).
L.H. Rettberg, B. Laux, M.Y. He, D. Hovis, A.H. Heuer, T.M. Pollock, Metall. Mater. Trans. 47A, 1132 (2016)
Y. Suo and S. Shen, Acta Mech. 226, 3375 (2015).
N.K. Das, T. Shoji, and Y. Takeda, Corros. Sci. 226, 3375 (2010).
Acknowledgements
I.T.C. is grateful for financial support of the fellowship 2016-T2/IND-1693, from the Programme Atracción de talento investigador (ConsejerÃa de Educación, Juventud y Deporte, Comunidad de Madrid). J.S.W. acknowledges the financial support from the Foundation of Polish Science Grant HOMING (No. Homing/2016-1/12). The HOMING programme is co-financed by the European Union under the European Regional Development Fund. The simulations were partially carried out by J.S.W. with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, under Grant No. GA69-30. The work at CCFE has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053 and funding from the RCUK Energy Programme [Grant No. EP/P012450/1]. The views and opinions expressed here do not necessarily reflect those of the European Commission. D.N.M. would like to acknowledge the support from Marconi-Fusion, the High Performance Computer at the CINECA headquarters in Bologna (Italy), for its provision of supercomputer resources. P.E.J.R.D.C.’s work was supported by Grant EP/L025213/1 from the UK Engineering and Physical Sciences Research Council (EPSRC). He is grateful to Prof. Claudio Paoloni for the provision of laboratory facilities at Lancaster University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Toda-Caraballo, I., Wróbel, J.S., Nguyen-Manh, D. et al. Simulation and Modeling in High Entropy Alloys. JOM 69, 2137–2149 (2017). https://doi.org/10.1007/s11837-017-2524-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-017-2524-2