Skip to main content
Log in

The Role of Compositional Tuning of the Distributed Exchange on Magnetocaloric Properties of High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper explores the FeCoNiCuMn high-entropy alloy system, where small departures from equiatomic composition have yielded technologically interesting 300-K Curie temperatures (\(T_{\mathrm{c}}\)), making them promising for magnetocaloric applications. We also demonstrate that the small deviations from equiatomic compositions do not affect the structural stability of our single-phase fcc-based solid solutions. Room-temperature Mössbauer spectroscopy measurements provide evidence for the distributed exchange interactions (\(J_{\mathrm{ex}}\)) occurring between the magnetic elements, which contribute to a broadened magnetocaloric effect observed for these alloys. The average hyperfine field observed in the Mössbauer spectra decreases as the \(T_{\mathrm{c}}\) of the alloys decrease, confirming direct current magnetic measurements. Multiple peaks in the hyperfine field distribution are interpreted considering pairwise ferromagnetic or antiferromagnetic \(J_{\mathrm{ex}}\) between all elements except the Cu diluent as contributing to overall magnetic exchange in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.A. Schneidner Jr. and V.K. Pecharsky. Ann. Rev. Mater. Sci. 30, 387 (2000).

    Article  Google Scholar 

  2. E. Brück, O. Tegus, L. Zhang, X.W. Li, F.R. de Boer, and K.H.J. Buschow. J. Alloys Compd. 383, 32 (2004).

    Article  Google Scholar 

  3. V.K. Pecharsky and G.A. Schneidner Jr. Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  4. V. Provenzano, A.J. Shapiro, and R.D. Shull. Nature 429, 853 (2004).

    Article  Google Scholar 

  5. N. Carsen, R. Fingers, M.E. McHenry, D. Chaumette, and L. Alger. Unclassified NATO Report, Washington (2015)

  6. O. Tegus, E. Brück, K.H.J. Buschow, and F.R. de Boer. Nature 415, 150 (2002)

    Article  Google Scholar 

  7. V. Chaudhary and R. Ramanujan. Sci. Rep. 6, 35156 (2016).

    Article  Google Scholar 

  8. J. Lawa, V. Francoc, P. Keblinski, and R. Ramanujana. Appl. Therm. Eng. 52, 17 (2012).

    Article  Google Scholar 

  9. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes. Nat. Mater. 4, 450 (2005).

    Article  Google Scholar 

  10. I. Škorvánek and J. Kovác. Czech. J. Phys. 54 (1), 189 (2004)

    Article  Google Scholar 

  11. V. Franco, J.S. Blázquez, C.F. Conde, and A. Conde. Appl. Phys. Lett. 88, 042505 (2006).

    Article  Google Scholar 

  12. V. Franco, J.M. Borrego, C.F. Conde, and A. Conde. J. Appl. Phys. 100, 083903 (2006)

    Article  Google Scholar 

  13. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, and L.F. Kiss. J. Appl. Phys. 105, 123922 (2009).

    Article  Google Scholar 

  14. H. Ucar, M. Craven, D.E. Laughlin, and M.E. McHenry. J. Electron. Mater. 43, 137 (2014).

    Article  Google Scholar 

  15. N.J. Jones, H. Ucar, J.J. Ipus, M.E. McHenry, and D.E. Laughlin. J. Appl. Phys. 111, 07A334 (2012).

    Article  Google Scholar 

  16. K.A. Gallagher, M.A. Willard, V. Zabenkin, D.E. Laughlin, and M.E. McHenry. J. Appl. Phys. 85, 5130 (1999).

    Article  Google Scholar 

  17. H. Ucar, J.J. Ipus, D.E. Laughlin, and M.E. McHenry. J. Appl. Phys. 113, 17A918 (2013).

    Article  Google Scholar 

  18. J.J. Ipus, P. Herre, P.R. Ohodnicki, and M.E. McHenry. J. Appl. Phys. 11, 07A323 (2012).

    Article  Google Scholar 

  19. J.J. Ipus, H. Ucar, and M.E. McHenry. IEEE Trans. Magn. 47, 2494 (2011).

    Article  Google Scholar 

  20. F. Körmann, D. Ma, D.D. Belyea, M.S. Lucas, C.W. Miller, B. Grabowski, M.H.F. Sluiter. Appl. Phys. Lett. 107, 142404 (2015)

    Article  Google Scholar 

  21. D. Maa, B. Grabowski, F. Körmannb, J. Neugebauer, and D. Raabe. Acta Mater. 100, 90 (2015).

    Article  Google Scholar 

  22. A. Bensadiq, H. Zaari, A. Benyoussef, and A.E. Kenz. J. Solid State Chem. 241, 38 (2016).

    Article  Google Scholar 

  23. M.S. Lucas, D. Belyea, C. Bauer, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Horward, S.L. Semiatin, M.E. McHenry, and C.W. Miller. J. Appl. Phys. 113, 17A923 (2013).

    Article  Google Scholar 

  24. M.E. McHenry and M. Lucas, Characterization of Materials, second-edn. (Wiley, New York, 2012), pp. 1–12

    Google Scholar 

  25. H. Ucar. Carnegie Mellon University, Pittsburgh, PA. Unpublished doctoral dissertation (2013)

  26. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen. Mater. Sci. Forum 560, 1 (2007).

    Article  Google Scholar 

  27. J.-W. Yeh. Ann. Chim. 31, 633 (2006).

    Article  Google Scholar 

  28. J. Yeh, S. Chen, J. Gan, S. Lin, T. Chin, T. Shun, C. Tsau, and S. Chang. Metall. Mater. Trans. A 35A, 2533 (2004).

    Article  Google Scholar 

  29. U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T. Hansen, A. Fitch, Z. Leong, S. Chambreland, and R. Goodall. J. Alloys Compd. 681, 330 (2016).

    Article  Google Scholar 

  30. F. He, Z. Wang, Q. Wu, J. Li, J. Wang, and C. Liu. Scr. Mater. 126, 15 (2017).

    Article  Google Scholar 

  31. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang. Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  32. D.D. Belyea, M.S. Lucas, E. Michel, J. Horwath, and C.W. Miller. Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  33. M. Kurniawan, A. Perrin, P. Xu, V. Keylin, and M. McHenry. IEEE Magn. Lett. 7, 6105005 (2016).

    Article  Google Scholar 

  34. J. Nelson and D. Riley. Proc. Phys. Soc. 57, 160 (1945).

    Article  Google Scholar 

  35. K. Engelbrecht, C.R.H. Bahl, and K.K. Nielsen. Int. J. Refrig. 34, 1132 (2011).

    Article  Google Scholar 

  36. U. Gonser. Mossbauer Spectroscopy, Topics in Applied Physics Series, (Springer, Berlin, 1975).

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (NSF) through Grant DMR-1709247. The authors also acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785. We thank Vladimir Keylin and William Hasley III for sample preparation and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Perrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, A., Sorescu, M., Burton, MT. et al. The Role of Compositional Tuning of the Distributed Exchange on Magnetocaloric Properties of High-Entropy Alloys. JOM 69, 2125–2129 (2017). https://doi.org/10.1007/s11837-017-2523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2523-3

Navigation