JOM

, Volume 69, Issue 11, pp 2352–2357 | Cite as

Recovery of Manganese Ore Tailings by High-Gradient Magnetic Separation and Hydrometallurgical Method

  • Xiufeng Zhang
  • Xiumin Tan
  • Yuejun Yi
  • Weizao Liu
  • Chun Li
Article
  • 163 Downloads

Abstract

With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0–5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.

Notes

Acknowledgements

This work is financially supported by the Special Fund for Research in the Public Interest of Ministry of Land and Resources of China (Grant No. 201211069).

Supplementary material

11837_2017_2521_MOESM1_ESM.docx (295 kb)
Supplementary material 1 (DOCX 295 kb)

References

  1. 1.
    K. Hagelstein, J. Environ. Manag. 90, 3736 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 137 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. Wu, B. Shi, W. Ge, C.J. Yan, and X. Yang, JOM 67, 361 (2015).CrossRefGoogle Scholar
  4. 4.
    S.K. Tripathy, P.K. Banerjee, and N. Suresh, Int. J. Miner. Metall. Mater. 22, 661 (2015).CrossRefGoogle Scholar
  5. 5.
    G.V. Rao, B.K. Mohapatra, and A.K. Tripathy, Magn. Electron. Sep. 9, 69 (1998).CrossRefGoogle Scholar
  6. 6.
    M. Mpho, B. Samson, and A. Ayo, Int. J. Min. Sci. Technol. 23, 537 (2013).CrossRefGoogle Scholar
  7. 7.
    Z.L. Cai, Y.L. Feng, H.R. Li, X.W. Liu, and Z.C. Yang, JOM 64, 1296 (2012).CrossRefGoogle Scholar
  8. 8.
    W.Y. Sun, S.J. Su, Q.Y. Wang, and S.L. Ding, Hydrometallurgy 133, 118 (2013).CrossRefGoogle Scholar
  9. 9.
    S.C. Das, P.K. Sahoo, and P.K. Rao, Hydrometallurgy 8, 35 (1982).CrossRefGoogle Scholar
  10. 10.
    A.A. Nayl, I.M. Ismail, and H.F. Aly, Int. J. Miner. Process. 100, 116 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Hariprasad, B. Dash, M.K. Ghosh, and S. Anand, Miner. Eng. 20, 1293 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Alaoui, K.E. Kacemi, K.E. Ass, S. Kitane, and S.E. Bouzidi, JOM 67, 1086 (2015).CrossRefGoogle Scholar
  13. 13.
    F. Vegliò, M. Trifoni, F. Pagnanelli, and L. Toro, Hydrometallurgy 60, 167 (2001).CrossRefGoogle Scholar
  14. 14.
    B. Xin, T. Li, X. Li, Z. Dan, F. Xu, N. Duan, Y. Zhang, and H. Zhang, J. Clean. Prod. 92, 54 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Ghosh, S. Mohanty, A. Akcil, L.B. Silcla, and A.P. Das, Chemosphere 154, 628 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Svoboda, Phys. Sep. Sci. Eng. 2, 51 (1986).Google Scholar
  17. 17.
    Y. Zeng and T. Liu, Ore Geol. Rev. 15, 153 (1999).CrossRefGoogle Scholar
  18. 18.
    S. Pani, S.K. Singh, and B.K. Mohapatra, JOM 68, 1 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Xiufeng Zhang
    • 1
    • 2
  • Xiumin Tan
    • 2
  • Yuejun Yi
    • 2
  • Weizao Liu
    • 1
  • Chun Li
    • 1
  1. 1.College of Chemical EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.Zhengzhou Institute of Multipurpose Utilization of Mineral ResourcesCAGSZhengzhouPeople’s Republic of China

Personalised recommendations