, Volume 69, Issue 11, pp 2373–2378 | Cite as

Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid–Liquid Extraction

  • Zhaobo Liu
  • Hongxu Li
  • Qiankun Jing
  • Mingming Zhang


The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid–liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.



The authors would like to thank the financial support from the National Natural Science Foundation of China (Nos. 51234008, 51274042, and 51474028), Beijing Technical Development Project (No. 00012132), and China Postdoctoral Science Foundation (No. 2016M590046).


  1. 1.
    J. Roosen, S. Van Roosendael, C.R. Borra, T. Van Gerven, S. Mullens, and K. Binnemans, Green Chem. 18, 2005 (2016).CrossRefGoogle Scholar
  2. 2.
    J.A. Ober and B.W. Jaskula, Mineral Commodity Summaries 2016 (Reston, VA: US Geological Survey, 2016).CrossRefGoogle Scholar
  3. 3.
    Z. Liu and H. Li, Hydrometallurgy 155, 29 (2015).CrossRefGoogle Scholar
  4. 4.
    V.L. Rayzman, I.Z. Pevzner, V.M. Sizyakov, and L.P. Ni, JOM 55, 47 (2003).CrossRefGoogle Scholar
  5. 5.
    H.I. Gomes, A. Jones, M. Rogerson, I.T. Burke, and W.M. Mayes, Environ. Sci. Pollut. Res. 1, 23034 (2016).CrossRefGoogle Scholar
  6. 6.
    C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven, JOM 68, 2958 (2016).CrossRefGoogle Scholar
  7. 7.
    W. Wang and C.Y. Cheng, J. Chem. Technol. Biotechnol. 86, 1237 (2011).CrossRefGoogle Scholar
  8. 8.
    W. Wang, Y. Pranolo, and C.Y. Cheng, Sep. Purif. Technol. 108, 96 (2013).CrossRefGoogle Scholar
  9. 9.
    P. Davris, E. Balomenos, D. Panias, and I. Paspaliaris, Hydrometallurgy 164, 125 (2016).CrossRefGoogle Scholar
  10. 10.
    B. Onghena and K. Binnemans, Ind. Eng. Chem. Res. 54, 1887 (2015).CrossRefGoogle Scholar
  11. 11.
    B. Onghena, C.R. Borra, T. Van Gerven, and K. Binnemans, Sep. Purif. Technol. 176, 208 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Baba, A. Fukami, F. Kubota, N. Kamiya, and M. Goto, RSC Adv. 4, 50726 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Takano, Y. Ozaki, S. Asano, M. Goto, F. Kubota, and Y. Baba, US Patent 20150284821, 2015.Google Scholar
  14. 14.
    Z. Zhao, Y. Baba, W. Yoshida, F. Kubota, and M. Goto, J. Chem. Technol. Biotechnol. 91, 2779 (2016).CrossRefGoogle Scholar
  15. 15.
    C. Isogawa, N. Murayama, and J. Shibata, J. Eng. Sci. Technol. Proc. 10, 78 (2015).Google Scholar
  16. 16.
    Y. Wang, S. Yue, D. Li, M. Jin, and C. Li, Solvent Extr. Ion Exch. 20, 701 (2002).CrossRefGoogle Scholar
  17. 17.
    Q. Bo, J. Lu, D. Li, X. Zhang, and W. Ye, Chin. J. Anal. Chem. 29, 45 (2001).Google Scholar
  18. 18.
    H. Yang, W. Wang, H. Cui, and J. Chen, Chin. J. Anal. Chem. 39, 1561 (2011).CrossRefGoogle Scholar
  19. 19.
    C.R. Borra, Y. Pontikes, K. Binnemans, and T. Van Gerven, Miner. Eng. 76, 20 (2015).CrossRefGoogle Scholar
  20. 20.
    W. Keqin, S. Jiawei, G. Yan, and J. Wu, Chin. J. Rare Metals. 4, 029 (2012).Google Scholar
  21. 21.
    H. Deng, Study on Extraction of Scandium from Hydrochloric Acid Leaching Solution of Red Mud (Taiyuan: Taiyuan University of Technology, 2011).Google Scholar
  22. 22.
    Z. Liu, H. Li, and Z. Zhao, Rare Metal Technology 2017 (New York: Springer, 2017), p. 255.CrossRefGoogle Scholar
  23. 23.
    Z. Liu, Y. Zong, H. Li, D. Jia, and Z. Zhao, J. Rare Earth. 35, 896 (2017).CrossRefGoogle Scholar
  24. 24.
    M. Ochsenkühn-Petropulu, T. Lyberopulu, and G. Parissakis, Anal. Chim. Acta 315, 231 (1995).CrossRefGoogle Scholar
  25. 25.
    J. Chen, Handbook of Hydrometallurgy, 1st ed. (Beijing: Metallurgical Industry Press, 2005), p. 1067.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.China Nonferrous Engineering and Research InstituteBeijingPeople’s Republic of China
  3. 3.ArcelorMittal Global R&DEast ChicagoUSA

Personalised recommendations