Skip to main content
Log in

Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical Attrition

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A stable passive film exhibiting good corrosion resistance in a 3.5 wt.% NaCl solution was formed on the surface of pure titanium (Ti) subjected to a surface mechanical attrition treatment (SMAT). The corrosion potential (−0.21 V) of the film was significantly higher than that (−0.92 V) of the untreated sample. Moreover, the corrosion current density was an order of magnitude lower than that of the untreated sample. SMAT resulted in a decrease in the vacancy condensation in the TiO2 film, thereby inhibiting the invasion and diffusion of Cl in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu, Acta Mater. 51, 1871 (2003).

    Article  Google Scholar 

  2. K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Acta Mater. 52, 4101 (2004).

    Article  Google Scholar 

  3. Y. Liu, B. Jin, and J. Lu, Mat. Sci. Eng. A. 636, 446 (2015).

    Article  Google Scholar 

  4. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu, Science 299, 686 (2003).

    Article  Google Scholar 

  5. Y. Li, K.N. Sun, P. Liu, Y. Liu, and P.F. Chui, Vacuum 101, 102 (2014).

    Article  Google Scholar 

  6. C. Pan, L. Liu, Y. Li, S.G. Wang, and F.H. Wang, Electrochim. Acta 56, 7740 (2011).

    Article  Google Scholar 

  7. S. Kumar, K. Chattopadhyay, and V. Singh, Mater. Charact. 121, 23 (2016).

    Article  Google Scholar 

  8. S. Jindal, R. Bansal, B.P. Singh, R. Pandey, S. Narayanan, M.R. Wani, and V. Singh, J. Oral Implantol. 40, 347 (2014).

    Article  Google Scholar 

  9. Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, Surf. Coat. Technol. 280, 216 (2015).

    Article  Google Scholar 

  10. T. Chen, H. John, J. Xu, Q.H. Lu, J. Hawk, and X.B. Liu, Corros. Sci. 77, 230 (2013).

    Article  Google Scholar 

  11. R. Huang and Y. Han, Mater. Sci. Eng., C 33, 2353 (2013).

    Article  Google Scholar 

  12. T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan, Corros. Sci. 52, 3826 (2010).

    Article  Google Scholar 

  13. Z.L. Jiang, X. Dai, T. Norby, and H. Middleton, Corros. Sci. 53, 815 (2011).

    Article  Google Scholar 

  14. V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, and M.J.R. Barboza, Corros. Sci. 88, 317 (2014).

    Article  Google Scholar 

  15. S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel, Surf. Coat. Technol. 224, 82 (2013).

    Article  Google Scholar 

  16. T.L. Fu, Z.L. Zhan, L. Zhang, Y.R. Yang, Z. Liu, J.X. Liu, L. Li, and X.H. Yu, Surf. Coat. Technol. 280, 129 (2015).

    Article  Google Scholar 

  17. I. Milošev, M. Metikoš-Huković, and H.-H. Strehblow, Biomaterials 21, 2103 (2000).

    Article  Google Scholar 

  18. Z.L. Jiang, X. Dai, and H. Middleton, Mater. Sci. Eng., B 176, 79 (2011).

    Article  Google Scholar 

  19. B.V. Senkovskiy, D.Yu. Usachov, A.V. Fedorov, O.Yu. Vilkov, A.V. Shelyakov, and V.K. Adamchuk, J. Alloy. Compd. 537, 190 (2012).

    Article  Google Scholar 

  20. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie: Perkin-Elmer Corporation, 1992).

    Google Scholar 

  21. I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, Corros. Sci. 53, 796 (2011).

    Article  Google Scholar 

  22. M.K. Han, M.J. Hwang, M.S. Yang, H.S. Yang, H.J. Song, and Y.J. Park, Mater. Sci. Eng., A 616, 268 (2014).

    Article  Google Scholar 

  23. Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu, and X.G. Li, Corros. Sci. 52, 3646 (2010).

    Article  Google Scholar 

  24. R. Leiva-García, J.C.S. Fernandes, M.J. Muñoz-Portero, and J. García-Antón, Corros. Sci. 94, 327 (2015).

    Article  Google Scholar 

  25. Z.L. Jiang, X. Dai, and H. Middleton, Mater. Chem. Phys. 126, 859 (2011).

    Article  Google Scholar 

  26. R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, and J. García-Antón, Electrochim. Acta 95, 1 (2013).

    Article  Google Scholar 

  27. R. Cabrera-Sierra, J. Vazquez-Arenas, S. Cardoso, R.M. Luna-Sánchez, M.A. Trejo, J. Marín-Cruz, and J.M. Hallen, Electrochim. Acta 56, 8040 (2011).

    Google Scholar 

  28. P. Kofstad, Oxid. Met. 44, 3 (1995).

    Article  Google Scholar 

  29. D.D. Macdonald, J. Electrochem. Soc. 12, 3434 (1992).

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Natural Science Foundation of China (Grant Nos. 51665022 and 51601081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Yu or Zhaolin Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Wang, X., Liu, J. et al. Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical Attrition. JOM 69, 1844–1847 (2017). https://doi.org/10.1007/s11837-017-2511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2511-7

Navigation